Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A pandemic known as anti-microbial resistance (AMR) poses a challenge to contemporary medicine. To stop AMR's rise and quick worldwide spread, urgent multisectoral intervention is needed. This review will provide insight on new and developing treatment approaches for AMR. Future therapy options may be made possible by the development of novel drugs that make use of developments in "omics" technology, artificial intelligence, and machine learning. Vaccines, immunoconjugates, antimicrobial peptides, monoclonal antibodies, and nanoparticles may also be intriguing options for treating AMR in the future. Combination therapy may potentially prove to be a successful strategy for combating AMR. To lessen the impact of AMR, ideas like drug repurposing, antibiotic stewardship, and the one health approach may be helpful.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5582/ddt.2024.01063 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!