Sodium MRI of the skin using a surface coil to investigate and reduce signal loss and bias.

Magn Reson Med

Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada.

Published: March 2025

Purpose: The purpose was to improve sodium MRI of human skin using a surface coil and twisted projection imaging with smaller, reshaped voxels.

Methods: Calf skin sodium images were acquired in 14 healthy adults using twisted projection imaging with short TE ˜ 0.1 ms, first with a volume coil and voxels (1.5 × 1.5 × 15 = 34 mm) reflecting the widely adopted skin imaging protocol (VolPencil). A 5-cm-diameter surface coil then facilitated 5× smaller (0.8 × 0.8 × 10 = 6.4 mm) voxels with similar signal to noise ratio (SNR) in the same 12-min scan time (SurfPencil). "Pencil-shaped" voxels were then replaced with "pancake-shaped" (0.4 × 4 × 4 = 6.4 mm) voxels, matching the anatomy of pressed flat skin (SurfPancake). Surface coil B was investigated with the novel use of spin-3/2 simulation. Protocol modifications were tested for signal increase (reduced loss) and correlation with (bias by) skin thickness.

Results: Higher resolution SurfPencil yielded 44% ± 16% greater skin sodium image intensity than VolPencil, whereas SurfPancake yielded an additional 20% ± 9% (p < 1e), reflecting reduced signal loss. Over the 1.0 to 1.8 mm skin thickness across participants, sodium intensity significantly increased 56% ± 19% and 44% ± 12% for VolPencil and SurfPencil, respectively (p < 0.003), but not for SurfPancake, reflecting reduced bias. Imaging yielded skin sodium concentration of 34 ± 5 mM for SurfPancake. This is greater than the ˜20 mM measures from the widely adopted protocol, but simulation (matching experimental trends) identified a remaining 64% signal loss; compensation yields 95 ± 15 mM.

Conclusion: Surface coil imaging and "pancake" voxel reshaping increased skin sodium intensity and reduced bias by skin thickness. Simulated loss compensation yields skin sodium concentration similar to that measured by atomic absorption spectroscopy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11680724PMC
http://dx.doi.org/10.1002/mrm.30343DOI Listing

Publication Analysis

Top Keywords

surface coil
16
sodium mri
8
skin surface
8
twisted projection
8
projection imaging
8
skin sodium
8
skin
7
coil
5
sodium
4
mri skin
4

Similar Publications

Optimization of ultrasound-assisted enzymatic hydrolysis Zophobas morio protein and its protective effects against HO-induced oxidative stress in RAW264.7 cells.

Int J Biol Macromol

January 2025

School of Food Science and Technology, Kyungpook National University, Daegu 702-701, Republic of Korea; Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea. Electronic address:

Zophobas morio protein (ZMP) is a promising protein resource with notable biological properties, and its hydrolysis could unlock enhanced bioactivities. This study investigated ultrasound-assisted enzymatic hydrolysis (UAEH) of ZMP using different enzymes (Alcalase, Neutrase, and Protamex) to determine its effect on the degree of hydrolysis (DH) compared to enzymatic hydrolysis (EH). UAEH showed greater hydrolysis efficiency than EH, with Alcalase exhibiting the highest DH.

View Article and Find Full Text PDF

This study evaluated the effects of chemical modification, including ethanol, acetic acid, and natural deep eutectic solvents (NADES), on the secondary and tertiary structures, hydrophobicity, free amine content, protein-protein interactions, and functional properties of zein. The NADES used included choline chloride: oxalic acid, choline chloride: urea, choline chloride: glycerol, and glucose: citric acid. The results reveal that the NADES system significantly altered zein's structures, as evidenced by Fourier transform infrared spectroscopy, fluorescence, and Ultraviolet-Visible Spectroscopy analysis.

View Article and Find Full Text PDF

Recent progress in digital microfluidics has revealed the distinct advantages of liquid marbles, such as minimal surface friction, reduced evaporation rates, and non-wettability compared to uncoated droplets. This study provides a comprehensive examination of an innovative technique for the precise, contamination-free manipulation of non-magnetic water liquid marbles (WLMs) carried by a ferrofluid liquid marble (FLM) under the control of direct current (DC) and pulse-width modulation (PWM) magnetic fields. The concept relies on the phenomenon in which an FLM and WLMs form a shared meniscus when placed together on a water surface, causing the WLMs to closely track the magnetically actuated FLM.

View Article and Find Full Text PDF

Bacteriocins, naturally derived antimicrobial peptides, are considered promising alternatives to traditional preservatives and antibiotics, particularly in food and medical applications. Despite extensive research on various bacteriocins, cyclic varieties remain understudied. This study introduces Gassericin GA-3.

View Article and Find Full Text PDF

Coil embolization of cerebral aneurysms often encounters challenges in achieving complete filling of the aneurysm sac due to complex shapes and hemodynamic factors, frequently resulting in the formation of a residual cavity (RC) at the aneurysm neck. The hemodynamic mechanisms underlying RC formation and growth, however, remain poorly understood. Computational fluid dynamics (CFD) analysis, combined with silent MRA free from contrast agents and metal artifacts, offers a promising approach to elucidate these mechanisms, potentially enhancing the clinical management of cerebral aneurysms post-coiling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!