Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Tuberculosis has been one of the most common communicable diseases raising global concerns. Accurately predicting the incidence of Tuberculosis remains challenging. Here we constructed a time-series analysis and fusion tool using multi-source data, and aimed to more accurately predict the incidence trend of tuberculosis of Anhui Province from 2013 to 2023. Random forest algorithm (RF), Feature Recursive Elimination (RFE) and Least absolute shrinkage and selection operator (LASSO) were implemented to improve the derivation of features related to infectious diseases and feature work. Based on the characteristics of infectious disease data, a model of RF-RFE-LASSO integrated particle swarm optimization multiple inputs long short term memory recurrent neural network (RRL-PSO-MiLSTM) was created to perform more accurate prediction. Results showed that the PSO-MiLSTM achieved excellent prediction results compared with common single-input and multi-input time-series models (test set MSE:42.3555, MAE: 59.3333, RMSE: 146.7237, MAPE: 2.1133, R: 0.8634). PSO-MiLSTM enriches and complements the methodological research content of calibrating the time-series predictive analysis of infectious diseases using multi-source data, and can be used as a brand-new benchmark for the analysis of influencing factors and trend prediction of infectious diseases at the public health level in the future, as well as providing a reference for incidence rate prediction of infectious diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520048 | PMC |
http://dx.doi.org/10.1186/s12890-024-03296-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!