Exploring the role of novel cancer gene BZW1 in lung adenocarcinoma (LUAD) and unveiling associated signalling pathways. Firstly, we conducted a pan-cancer analysis of BZW1 using multiple databases. Subsequently, leveraging single-cell data from LUAD, we successfully uncovered potential oncological processes associated with BZW1 and further validated them through experimentation. Simultaneously, we continued to investigate the potential molecular mechanisms underlying the oncological processes mediated by BZW1. Additionally, we employed various machine learning algorithms to construct prognostic models concerning BZW1 and the epithelial-mesenchymal transition (EMT) process. Our research firstly demonstrated the elevated expression of BZW1 in various cancer cells. Leveraging single-cell data from LUAD, we identified that BZW1 regulates the occurrence of EMT in LUAD, a phenomenon validated across multiple LUAD cell lines. Moreover, we further discovered that BZW1 regulates LUAD's EMT process through the Wnt/β-catenin signalling pathway. Lastly, we successfully constructed prognostic models using BZW1-related genes and EMT genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512756PMC
http://dx.doi.org/10.1111/jcmm.70163DOI Listing

Publication Analysis

Top Keywords

lung adenocarcinoma
8
bzw1
8
leveraging single-cell
8
single-cell data
8
data luad
8
oncological processes
8
prognostic models
8
emt process
8
bzw1 regulates
8
emt
5

Similar Publications

Background: This study aims to quantify intratumoral heterogeneity (ITH) using preoperative CT image and evaluate its ability to predict pathological high-grade patterns, specifically micropapillary and/or solid components (MP/S), in patients diagnosed with clinical stage I solid lung adenocarcinoma (LADC).

Methods: In this retrospective study, we enrolled 457 patients who were postoperatively diagnosed with clinical stage I solid LADC from two medical centers, assigning them to either a training set (n = 304) or a test set (n = 153). Sub-regions within the tumor were identified using the K-means method.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC), half of which are lung adenocarcinoma (LUAD), is one of the most widely spread cancers in the world. Telomerase, which maintains telomere length and chromosomal integrity, enables cancer cells to avoid replicative senescence. When telomerase is inhibited, cancer cells' senescence began, preventing them from growing indefinitely.

View Article and Find Full Text PDF

Patients with metastatic pancreatic ductal adenocarcinoma survive longer if disease spreads to the lung but not the liver. Here we generated overlapping, multi-omic datasets to identify molecular and cellular features that distinguish patients whose disease develops liver metastasis (liver cohort) from those whose disease develops lung metastasis without liver metastases (lung cohort). Lung cohort patients survived longer than liver cohort patients, despite sharing the same tumor subtype.

View Article and Find Full Text PDF

Human tumors are diverse in their natural history and response to treatment, which in part results from genetic and transcriptomic heterogeneity. In clinical practice, single-site needle biopsies are used to sample this diversity, but cancer biomarkers may be confounded by spatiogenomic heterogeneity within individual tumors. Here we investigate clonally expressed genes as a solution to the sampling bias problem by analyzing multiregion whole-exome and RNA sequencing data for 450 tumor regions from 184 patients with lung adenocarcinoma in the TRACERx study.

View Article and Find Full Text PDF

Long non-coding RNA CAR10 promotes angiogenesis of lung adenocarcinoma by mediating nuclear LDHA to epigenetically regulate VEGFA/C.

Commun Biol

January 2025

The First Department of Thoracic Surgery, Hunan Cancer Hospital and the affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China.

Angiogenesis is a significant character of lung adenocarcinoma (LUAD) and is an important reason leading to high mortality rates of LUAD patients. However, the molecular mechanisms of lncRNAs regulating the angiogenesis in LUAD have not been fully elucidated. Here we show lncRNA chromatin-associated RNA 10 (CAR10) was upregulated in the tumor tissue of patients with LUAD and enhanced tumor metastasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!