Cancer is a complex and heterogeneous disease characterised by uncontrolled cell growth and proliferation. One hallmark of cancer cells is their ability to undergo metabolic reprogramming, which allows them to sustain their rapid growth and survival. This metabolic reprogramming creates an immunosuppressive microenvironment that facilitates tumour progression and evasion of the immune system. In this article, we review the mechanisms underlying metabolic reprogramming in cancer cells and discuss how these metabolic alterations contribute to the establishment of an immunosuppressive microenvironment. We also explore potential therapeutic strategies targeting metabolic vulnerabilities in cancer cells to enhance immune-mediated anti-tumour responses. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT02044861, NCT03163667, NCT04265534, NCT02071927, NCT02903914, NCT03314935, NCT03361228, NCT03048500, NCT03311308, NCT03800602, NCT04414540, NCT02771626, NCT03994744, NCT03229278, NCT04899921.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/imm.13871 | DOI Listing |
Mol Med
January 2025
Department of Gastrointestinal Surgery, Taizhou Hospital, Wenzhou Medical University, No.105 Westgate Street, Linhai, 317000, China.
Sci Rep
January 2025
Dr B R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India.
Metabolic reprogramming, vital for cancer cells to adapt to the altered microenvironment, remains a topic requiring further investigation for different tumor types. Our study aims to elucidate shared metabolic reprogramming across breast (BRC), colorectal (CRC), and lung (LUC) cancers. Leveraging gene expression data from the Gene Expression Omnibus and various bioinformatics tools like MSigDB, WebGestalt, String, and Cytoscape, we identified key/hub metabolism-related genes (MRGs) and their interactions.
View Article and Find Full Text PDFCell Signal
January 2025
Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China. Electronic address:
ASS1(argininosuccinate synthase 1) is a rate-limiting enzyme in the urea cycle, catalyzing the synthesis of argininosuccinate from citrulline and aspartate to ultimately produce arginine and support cellular metabolism. Increasing evidence suggests that ASS1 is commonly dysregulated in the tumor microenvironment, promoting tumor cell metastasis and infiltration. With a deeper understanding of tumor metabolic reprogramming in recent years, the impact of ASS1 dysregulation on abnormal tumor metabolism has attracted growing interest among researchers.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Plant Production Department, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria 21531, Egypt; Work Station of Science and Technique for Post-doctoral in Sugar Beet Institute Afliated to Heilongjiang University, 74 Xuefu Road, Harbin 150000, Heilongjiang, China.
Ion beam mutagenesis is an advanced technique capable of inducing substantial changes in plants, resulting in noticeable alterations in their growth. However, the precise molecular mechanisms underlying the effects of radiation on soybeans remain unclear. This study investigates the impact of ionizing radiation on soybean development through a comprehensive approach that integrates transcriptomics and metabolomics.
View Article and Find Full Text PDFClin Transl Med
January 2025
Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang City, Liaoning Province, China.
As a hallmark of cancer, metabolic reprogramming adjusts macromolecular synthesis, energy metabolism and redox homeostasis processes to adapt to and promote the complex biological processes of abnormal growth and proliferation. The complexity of metabolic reprogramming lies in its precise regulation by multiple levels and factors, including the interplay of multiple signalling pathways, precise regulation of transcription factors and dynamic adjustments in metabolic enzyme activity. In this complex regulatory network, acetylation and deacetylation, which are important post-translational modifications, regulate key molecules and processes related to metabolic reprogramming by affecting protein function and stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!