A biodegradable lipid nanoparticle delivers a Cas9 ribonucleoprotein for efficient and safe in situ genome editing in melanoma.

Acta Biomater

State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China. Electronic address:

Published: December 2024

The development of melanoma is closely related to Braf gene, which is a suitable target for CRISPR/Cas9 based gene therapy. CRISPR/Cas9-sgRNA ribonucleoprotein complexes (RNPs) stand out as the safest format compared to plasmid and mRNA delivery. Similarly, lipid nanoparticles (LNPs) emerge as a safer alternative to viral vectors for delivering the CRISPR/Cas9-sgRNA gene editing system. Herein, we have designed multifunctional cationic LNPs specifically tailored for the efficient delivery of Cas9 RNPs targeting the mouse Braf gene through transdermal delivery, aiming to treat mouse melanoma. LNPs are given a positive charge by the addition of a newly synthesized polymer, deoxycholic acid modified polyethyleneimine (PEI-DOCA). Positive charge enables LNPs to be delivered in vivo by binding to negatively charged cell membranes and proteins, thereby facilitating efficient skin penetration and enhancing the delivery of RNPs into melanoma cells for gene editing purposes. Our research demonstrates that these LNPs enhance drug penetration through the skin, successfully delivering the Cas9 RNPs system and specifically targeting the Braf gene. Cas9 RNPs loaded LNPs exert a notable impact on gene editing in melanoma cells, significantly suppressing their proliferation. Furthermore, in mice experiments, the LNPs exhibited skin penetration and tumor targeting capabilities. This innovative LNPs delivery system offers a promising gene therapy approach for melanoma treatment and provides fresh insights into the development of safe and effective delivery systems for Cas9 RNPs in vivo. STATEMENT OF SIGNIFICANCE: CRISPR/Cas9 technology brings new hope for cancer treatment. Cas9 ribonucleoprotein offers direct genome editing, yet delivery challenges persist. For melanoma, transdermal delivery minimizes toxicity but faces skin barrier issues. We designed multifunctional lipid nanoparticles (LNPs) for Cas9 RNP delivery targeting the Braf gene. With metal microneedle pretreatment, our LNPs effectively edited melanoma cells, reducing Braf expression and inhibiting tumor growth. Our study demonstrates LNPs' potential for melanoma therapy and paves the way for efficient in vivo Cas9 RNP delivery systems in cancer therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2024.10.030DOI Listing

Publication Analysis

Top Keywords

braf gene
16
cas9 rnps
16
gene editing
12
melanoma cells
12
delivery
10
lnps
10
melanoma
9
gene
9
cas9
8
cas9 ribonucleoprotein
8

Similar Publications

Introduction: The current WHO classification of melanocytic tumors distinguishes 9 pathogenic routes. This classification is based on the conceptual interpretation that melanocytic tumors evolve from benign counterparts, accumulating mutations, eventually developing into melanomas with metastatic and potentially lethal capacity. In this article, we present a molecular study of 2 melanocytic tumors that suggest a "leap" from pathogenic routes IV to I.

View Article and Find Full Text PDF

Purpose: Long noncoding RNAs (lncRNAs) play crucial regulatory roles in the tumorigenesis and progression of various cancers. However, the functional roles of lncRNAs in papillary thyroid cancer (PTC) remain unclear. In this study, we investigated the functional role of the lncRNA FAM111A-DT in PTC progression and the underlying mechanisms.

View Article and Find Full Text PDF

Background: Insulin signaling deregulation in the brain is a critical risk factor for Alzheimer's disease (AD); however, molecular changes in this pathway during AD pathogenesis cannot be currently accessed in clinical setting due to lack of brain tissues. Here, we propose small extracellular vesicles (sEV) characterization as a non-invasive approach to assess the status of insulin signaling in the AD brain.

Method: In postmortem brain tissues of cognitively normal (CN) and AD (n=5 each) subjects, expression of 84 genes, involved in insulin signaling and resistance was analyzed using pathway specific PCR array.

View Article and Find Full Text PDF

Background: disease burden (PCI), completeness of cytoreduction or histological features, are known to influence survival after CRS-HIPEC for colorectal peritoneal metastases (CPM). However, there is still debate about influence of CPM onset. The aim of this study is to determine the impact of CPM onset on oncological outcomes after CRS-HIPEC.

View Article and Find Full Text PDF

Constitutively active mutants of BRAF cause cardio-facio-cutaneous (CFC) syndrome, characterized by growth and developmental defects, cardiac malformations, facial features, cutaneous manifestations, and mental retardation. An animal model of human CFC syndrome, the systemic BrafQ241R/+ mutant mouse, has been reported to exhibit multiple CFC syndrome-like phenotypes. In this study, we analyzed the effects of Braf mutations on neural function, separately from their effects on developmental processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!