Background: Brain structure, oxygenation and perfusion are important factors in aging. Coupling between regional cerebral oxygen consumption and perfusion also reflects functions of neurovascular unit (NVU). Their trajectories and sex differences during normal aging important for clinical interpretation are still not well defined. In this study, we aim to investigate the relationship between brain structure, functions and age, and exam the sex disparities.

Method: A total of 137 healthy subjects between 20∼69 years old were enrolled with conventional MRI, structural three-dimensional T-weighted imaging (3D-TWI), 3D multi-echo gradient echo sequence (3D-mGRE), and 3D pseudo-continuous arterial spin labeling (3D-pCASL). Oxygen extraction fraction (OEF) and cerebral blood flow (CBF) were respectively reconstructed from 3D-mGRE and 3D-pCASL images. Cerebral metabolic rate of oxygen (CMRO) were calculated as follows: CMRO=CBF·OEF·[H], [H]=7.377 μmol/mL. Brains were segmented into global gray matter (GM), global white matter (WM), and 148 cortical subregions. OEF, CBF, CMRO, and volumes of GM/WM relative to intracranial volumes (rel_GM/rel_WM) were compared between males and females. Generalized additive models were used to evaluate the aging trajectories of brain structure and functions. The coupling between OEF and CBF was analyzed by correlation analysis. P or P < 0.05 was considered statistically significant.

Results: Females had larger rel_GM, higher CMRO and CBF of GM/WM than males (P < 0.05). With control of sex, CBF of GM significantly declined between 20 and 32 years, CMRO of GM declined subsequently from 33 to 41 years and rel_GM decreased significantly at all ages (R = 0.27, P < 0.001; R = 0.17, P < 0.001; R = 0.52, P < 0.001). In subregion analysis, CBF declined dispersedly while CMRO declined widely across most subregions of the cortex during aging. Robust negative coupling between OEF and CBF was found in most of the subregions (r range = -0.12∼-0.48, P < 0.05).

Conclusion: The sex disparities, age trajectories of brain structure and functions as well as the coupling of NVU in healthy individuals provide insights into normal aging which are potential targets for study of pathological conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2024.120903DOI Listing

Publication Analysis

Top Keywords

brain structure
20
normal aging
12
structure functions
12
oef cbf
12
trajectories sex
8
sex differences
8
structure oxygenation
8
oxygenation perfusion
8
trajectories brain
8
coupling oef
8

Similar Publications

Background: Delayed radiation-induced complications after stereotactic radiosurgery (SRS) for arteriovenous malformations (AVM) have scarcely been described in the literature, and their incidence, pathophysiology, and treatment remain unclear. Additionally, the literature regarding these complications is confusing. The authors present a well-documented case report describing these late complications, adding evidence to the possible common pathophysiological mechanism underlying them, and illustrating an effective treatment modality when they occur.

View Article and Find Full Text PDF

Lipid droplets (LDs), serving as the convergence point of energy metabolism and multiple signaling pathways, have garnered increasing attention in recent years. Different cell types within the central nervous system (CNS) can regulate energy metabolism to generate or degrade LDs in response to diverse pathological stimuli. This article provides a comprehensive review on the composition of LDs in CNS, their generation and degradation processes, their interaction mechanisms with mitochondria, the distribution among different cell types, and the roles played by these cells-particularly microglia and astrocytes-in various prevalent neurological disorders.

View Article and Find Full Text PDF

Background: Obesity is a multifactorial disease reaching pandemic proportions with increasing healthcare costs, advocating the development of better prevention and treatment strategies. Previous research indicates that the gut microbiome plays an important role in metabolic, hormonal, and neuronal cross-talk underlying eating behavior. We therefore aim to examine the effects of prebiotic and neurocognitive behavioral interventions on food decision-making and to assay the underlying mechanisms in a Randomized Controlled Trial (RCT).

View Article and Find Full Text PDF

Background: The imbalance of glutamate (Glu) and gamma-aminobutyric acid (GABA) neurotransmitter system plays a crucial role in the pathogenesis of Alzheimer's disease (AD). Riluzole is a Glu modulator originally approved for amyotrophic lateral sclerosis that has shown potential neuroprotective effects in various neurodegenerative disorders. However, whether riluzole can improve Glu and GABA homeostasis in AD brain and its related mechanism of action remain unknown.

View Article and Find Full Text PDF

Autophagy in brain tumors: molecular mechanisms, challenges, and therapeutic opportunities.

J Transl Med

January 2025

Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, China.

Autophagy is responsible for maintaining cellular balance and ensuring survival. Autophagy plays a crucial role in the development of diseases, particularly human cancers, with actions that can either promote survival or induce cell death. However, brain tumors contribute to high levels of both mortality and morbidity globally, with resistance to treatments being acquired due to genetic mutations and dysregulation of molecular mechanisms, among other factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!