For the efficient delivery of a cell therapy a treatment must be provided rapidly, at clinical scale, contain a sufficient active cellular component (biomass), and adhere to a multitude of regulatory requirements. Cryopreservation permits many of these demands to be met more readily. Here we present the cryopreservation and recovery of large volume (2.5L) alginate encapsulated liver cell spheroids (AELS), suitable for use with a novel bioartificial liver device (HepatiCan™) for the treatment of those suffering from acute liver failure (ALF), in regulatory approved cryobags and a cryopreservation process optimised for large volumes. By first assessing the thermal profiles of large scale cryobags with a thermal mimic, the feasibility of cryopreserving a full patient dose simultaneously (3x cryobags containing 833 ml biomass each) was investigated, allowing for small and subsequently large-scale testing of cellular functional recoveries. Work presented here demonstrates that optimised reproducible cooling and warming profiles could be achieved with these large volumes, leading to high biomass recoveries at full clinical scale. The recovered AELS also had high regeneration potential, achieving full pre-freeze viable cell densities within 3 days, indicating that the cell therapy could be delivered rapidly to patients with ALF. This study has presented the feasibility for rapid delivery of large volume cell therapies, whilst further research into improved speed of post-thaw recovery is warranted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cryobiol.2024.105155 | DOI Listing |
Biotechnol Bioeng
January 2025
Bioprinting Laboratories Inc., Dallas, Texas, USA.
Recent advancements in three-dimensional (3D) cell culture technologies, such as cell spheroids, organoids, and 3D bioprinted tissue constructs, have significantly improved the physiological relevance of in vitro models. These models better mimic tissue structure and function, closely emulating in vivo characteristics and enhancing phenotypic analysis, critical for basic research and drug screening in personalized cancer therapy. Despite their potential, current 3D cell culture platforms face technical challenges, which include user-unfriendliness in long-term dynamic cell culture, incompatibility with rapid cell encapsulation in biomimetic hydrogels, and low throughput for compound screening.
View Article and Find Full Text PDFAAPS J
January 2025
Moderna, Inc., Cambridge, Massachusetts, USA.
While the branched DNA (bDNA) assay is an established bioanalytical method for measurement of lipid nanoparticle (LNP)-encapsulated messenger RNA (mRNA) pharmacokinetic parameters, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) has been considered as an alternative platform. RT-qPCR and bDNA platforms were compared for sensitivity, specificity, correlation, and overall assay performance using serum and tissue samples from 2 nonclinical mouse studies of a therapeutic mRNA candidate, LNP-PAH-mRNA, which encodes for human phenylalanine hydroxylase enzyme. Pharmacokinetic parameter noncompartmental analysis was completed using Phoenix WinNonlin.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Republic of Korea.
Background: Nanodrugs play a crucial role in biomedical applications by enhancing drug delivery. To address safety and toxicity concerns associated with nanoparticles, lipid-nanocarrier-based drug delivery systems have emerged as a promising approach for developing next-generation smart nanomedicines. Ginseng has traditionally been used for various therapeutic purposes, including antiviral activity.
View Article and Find Full Text PDFBiomaterials
December 2024
Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Biotherapy Centre & Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China. Electronic address:
Liver resection represents a main curative treatment for patients with early-stage hepatocellular carcinoma (HCC), but there is a rather high incidence of postoperative HCC relapse, which severely shortens long-term survival time. Currently, no standard adjuvant strategies are available for preventing HCC relapse in clinical practice. Impaired natural killer (NK) cell anti-tumor immunity has been disclosed as a crucial root of HCC relapse, indicating that reinstating NK cell anti-tumor immunity may show promise to curb HCC relapse.
View Article and Find Full Text PDFCurr Cardiol Rep
January 2025
Third Department of Medicine, General University Hospital and First Faculty of Medicine, Charles University, 121 08, Prague, Czech Republic.
Purpose Of Review: In recent years, the terms "metabolic associated fatty liver disease-MAFLD" and "metabolic dysfunction-associated steatotic liver disease-MASLD" were introduced to improve the encapsulation of metabolic dysregulation in this patient population, as well as to avoid the negative/stigmatizing terms "non-alcoholic" and "fatty".
Recent Findings: There is evidence suggesting links between MASLD and coronary heart disease (CHD), heart failure (HF), atrial fibrillation (AF), stroke, peripheral artery disease (PAD) and chronic kidney disease (CKD), although the data for HF, AF, stroke and PAD are scarcer. Physicians should consider the associations between MASLD and CV diseases in their daily practice.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!