A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of isoproterenol, a β-adrenergic agonist, on the differentiation of insulin-producing pancreatic β cells derived from human pluripotent stem cells. | LitMetric

Effect of isoproterenol, a β-adrenergic agonist, on the differentiation of insulin-producing pancreatic β cells derived from human pluripotent stem cells.

Exp Cell Res

Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea. Electronic address:

Published: November 2024

AI Article Synopsis

  • Research shows that turning pancreatic progenitor cells into insulin-producing β-like cells for diabetes treatment is challenging, especially regarding how neural signals affect this process.
  • In this study, isoproterenol was used on human stem cell-derived pancreatic progenitor cells, resulting in more insulin production and improved function of these cells.
  • RNA analysis identified key genes and pathways linked to this enhanced differentiation, suggesting that isoproterenol could be a promising treatment strategy for diabetes by boosting beta cell maturation.

Article Abstract

Research on islet replacement through the differentiation of functionally matured insulin-producing β-like cells for the treatment of diabetes presents a significant challenge. Neural signals in β cell differentiation significantly impact the pancreatic microenvironment in glucose metabolism, but they are not fully understood. In this study, isoproterenol, a β adrenoreceptor agonist, was introduced into pancreatic progenitor cells, derived from human pluripotent stem cells in vitro, undergoing endocrine differentiation, using 2-dimensional (2D) and 3-dimensional (3D) differentiation protocols. This resulted in increased insulin and C-peptide secretion, along with elevated expression of key pancreatic beta cell transcription factors, including PDX-1, NKX6.1, and MAFA, and improved function, demonstrated by increased responsiveness to glucose determined via a glucose-stimulated insulin secretion test. Moreover, RNA transcriptome analysis of isoproterenol-treated endocrine progenitors facilitated the identification of biological pathways and genes that contribute to mature beta cell differentiation efficiency correlated with neural signals, such as adrenoceptor beta 1, calcium/calmodulin dependent protein kinase II alpha, phospholipase C delta 4, and neurotrophic receptor tyrosine kinase 1. Among those genes, calcium/calmodulin dependent protein kinase II alpha was suggested as the most notable gene involved in the isoproterenol mechanism through inhibitor assays. This study illustrates that isoproterenol significantly enhances endocrine differentiation and underscores its effects on stem cell-derived beta cell maturation, emphasizing its therapeutic potential for the treatment of diabetes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2024.114307DOI Listing

Publication Analysis

Top Keywords

beta cell
12
cells derived
8
derived human
8
human pluripotent
8
pluripotent stem
8
stem cells
8
treatment diabetes
8
neural signals
8
cell differentiation
8
endocrine differentiation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!