Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Concepts describe how instances of the same kind are related, enabling the categorization and interpretation of new information. How concepts are represented is a longstanding question. Category boundaries have been considered defining features of concept representations, which can guide categorical inference, with fMRI evidence showing category-boundary signals in the hippocampus. The underlying neural mechanism remains unclear. The hippocampal-entorhinal system, known for its spatially tuned neurons that form cognitive maps of space, may support conceptual knowledge formation, with place cells encoding locations in conceptual space. Physical boundaries anchor spatial representations and boundary shifts affect place and grid fields, as well as human spatial memory, along manipulated dimensions. These place cell responses are likely driven by boundary vector cells, which respond to boundaries at specific allocentric distances and directions, the neural correlates of which have been identified in the subiculum and entorhinal cortex. We hypothesize similar patterns of memory adaptations in response to shifting category boundaries. Our findings show that after category boundary shifts, participants' memory for category exemplars distorts along the changed dimension, mirroring place field deformations. We demonstrate that the boundary vector cell model of place cell firing best accounts for these distortions compared with alternative geometric explanations. Our study highlights a role of category boundaries in human cognition and establishes a new complementary link between hippocampal coding properties with respect to boundaries and human concept representation, bridging spatial and conceptual domains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cub.2024.09.083 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!