To maintain genomic integrity, cells have evolved several conserved DNA damage response (DDR) pathways in response to DNA damage and stress conditions. Apurinic/apyrimidinic endonuclease 1 (APE1) exhibits AP endonuclease, 3'-5' exonuclease, 3'-phosphodiesterase, and 3'-exoribonuclease activities and plays critical roles in the DNA repair and redox regulation of transcription. However, it remains unclear whether and how APE1 is involved in DDR pathways. In this perspective, we first updated our knowledge of APE1's functional domains and its nuclease activities and their specific associated substrates. We then summarized the newly discovered roles and mechanisms of action of APE1 in the global and nucleolar ATR-mediated DDR pathway. While the ATM-mediated DDR is well known to be activated by DNA double-strand breaks and oxidative stress, here we provided new perspectives as to how ATM DDR signaling is activated by indirect single-strand breaks (SSBs) resulting from genotoxic stress and defined SSB structures, and discuss how ATM kinase is directly activated and regulated by its activator, APE1. Together, accumulating body of new evidence supports the notion that APE1 is a master regulator protein of the ATR- and ATM-mediated DDR pathways. These new findings of APE1 in DDR signaling provide previously uncharacterized but critical functions and regulations of APE1 in genome integrity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11611674 | PMC |
http://dx.doi.org/10.1016/j.dnarep.2024.103776 | DOI Listing |
Nanoscale
January 2025
McMaster University, Department of Engineering Physics, Hamilton, ON M8S 4K1, Canada.
Photoresponsive drug delivery systems have great potential for improved cancer therapy. However, most of the currently available drug-delivery nanosystems are relatively large and require light excitation with low tissue penetration. Here, we designed a near infrared responsive drug delivery system by loading [Ru(terpyridine)(dipyridophenazine)(HO)] (Ru(tpy)DPPZ) in azobenzene-modified mesoporous silica coated NaGdF:Nd/Yb/Tm upconversion nanoparticles (azo-mSiO-UCNPs).
View Article and Find Full Text PDFActa Parasitol
January 2025
Department of Molecular Biology and Genetics, Ordu University, Ordu, Turkey.
Purpose: Acanthamoeba species are eucaryotic protozoa found predominantly in soil and water. They cause ulceration and vision loss in the cornea (Acanthamoeba keratitis) and central nervous system (CNS) infection involving the lungs (granulomatous amoebic encephalitis). Antiparasitic drugs currently used in the treatment of infections caused by Acanthamoeba species are not effective at the desired level in some anatomical regions such as the eye and CNS.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Emerging mercury-free ultraviolet (UV) sources, such as krypton chloride excimer (KrCl*) lamps and UV light emitting diodes (UV-LEDs), emit diverse wavelengths with distinct inactivation mechanisms. The combined application has the potential to improve disinfection effectiveness through synergism. In this study, a mini-fluidic photoreaction system equipped with a KrCl* lamp (222 nm) and a strip of UV-LEDs (275 nm) was developed, which could individually/simultaneously deliver accurate UV radiation(s) at 222 nm (0.
View Article and Find Full Text PDFNutr Neurosci
January 2025
Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, India.
Purpose: The incidence of obesity has surged to pandemic levels in recent decades. Approximately 1.89 million obesity are linked to excessive salt consumption.
View Article and Find Full Text PDFAging (Albany NY)
December 2024
CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
The ability to accurately quantify biological age could help monitor and control healthy aging. Epigenetic clocks have emerged as promising tools for estimating biological age, yet they have been developed from heterogeneous bulk tissues, and are thus composites of two aging processes, one reflecting the change of cell-type composition with age and another reflecting the aging of individual cell-types. There is thus a need to dissect and quantify these two components of epigenetic clocks, and to develop epigenetic clocks that can yield biological age estimates at cell-type resolution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!