Positioning loss of PARP1 activity as the central toxic event in BRCA-deficient cancer.

DNA Repair (Amst)

Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA. Electronic address:

Published: December 2024

The mechanisms by which poly(ADP-ribose) polymerase 1 (PARP1) inhibitors (PARPi)s inflict replication stress and/or DNA damage are potentially numerous. PARPi toxicity could derive from loss of its catalytic activity and/or its physical trapping of PARP1 onto DNA that perturbs not only PARP1 function in DNA repair and DNA replication, but also obstructs compensating pathways. The combined disruption of PARP1 with either of the hereditary breast and ovarian cancer genes, BRCA1 or BRCA2 (BRCA), results in synthetic lethality. This has driven the development of PARP inhibitors as therapies for BRCA-mutant cancers. In this review, we focus on recent findings that highlight loss of PARP1 catalytic activity, rather than PARPi-induced allosteric trapping, as central to PARPi efficacy in BRCA deficient cells. However, we also review findings that PARP-trapping is an effective strategy in other genetic deficiencies. Together, we conclude that the mechanism-of-action of PARP inhibitors is not unilateral; with loss of activity or enhanced trapping differentially killing depending on the genetic context. Therefore, effectively targeting cancer cells requires an intricate understanding of their key underlying vulnerabilities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11611662PMC
http://dx.doi.org/10.1016/j.dnarep.2024.103775DOI Listing

Publication Analysis

Top Keywords

loss parp1
8
catalytic activity
8
parp inhibitors
8
parp1
6
positioning loss
4
activity
4
parp1 activity
4
activity central
4
central toxic
4
toxic event
4

Similar Publications

The SNF2 family chromatin remodeler HELLS has emerged as an important regulator of cell proliferation, genome stability, and several cancer pathways. Significant upregulation of HELLS has been reported in 33 human cancer types. While HELLS has been implicated in DNA damage response, its function in DNA repair is poorly understood.

View Article and Find Full Text PDF

Serum miR-365b-5p/miR-222-5p as a potential diagnostic biomarker for long-term weight loss in patients with morbid obesity after bariatric surgery.

Metabolism

December 2024

Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain; Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Malaga, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain.

Background: The successful weight loss following bariatric surgery is not achieved in all patients with morbid obesity (MO). This study aims to determine whether a serum miRNA profile can predict this outcome.

Design: Thirty-three patients with MO were classified in "Good Responders" (GR, percentage of excess weight loss (%EWL) ≥ 50 %) or "Non-Responders" (NR, %EWL < 50 %) according to the %EWL 5-8 year following bariatric surgery.

View Article and Find Full Text PDF

Growing evidence reveals that microglia activation and neuroinflammatory responses trigger cell loss in the brain. Histamine is a critical neurotransmitter and promotes inflammatory responses; thus, the histaminergic system is a potential target for treating neurodegenerative processes. JNJ-7777120, a histamine H4 receptor (HR) antagonist, has been shown to alleviate inflammation, brain damage, and behavioral deficits effectively, but there is no report on its role in brain trauma.

View Article and Find Full Text PDF

Background: Methotrexate (MTX) is an agent used in the treatment of many neoplastic and non-neoplastic diseases and is known to cause oxidative damage in normal tissues. Curcumin (Cur) is a natural polyphenol compound with powerful antioxidant and antiapoptotic effects. In this study we investigate the effects of Cur on MTX-induced ovarian damage.

View Article and Find Full Text PDF

Lead (Pb) is the most common contaminant of heavy metals and is widely present in the environment. Destruction of bone structure, malformation of bone development, and loss of bone mass are important pathological features of lead-exposed individuals. However, the exact molecular mechanisms associated with lead exposure and osteogenic injury are still not fully understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!