Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ubiquitination is one of the most important post-translational modifications (PTMs) and involves the covalent attachment of ubiquitin to a lysine residue on a target protein. Despite ubiquitination playing a crucial role in regulating cellular processes, the ubiquitinated proteome has not been studied extensively in recombinant Chinese hamster ovary (CHO) cells. Moreover, ubiquitination modification in CHO cells is likely to have an impact on protein function related to the efficient productivity of biopharmaceuticals. In this chapter, we describe a comprehensive protocol for ubiquitin di-Glycine (diGly) peptide enrichment using an immunoprecipitation method from recombinant CHO cell proteins followed by Liquid chromatography-Mass spectrometry (LC-MS) analysis of the ubiquitinated proteome. The methods described are also applicable to differential ubiquitinated proteomic studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-4104-0_13 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!