A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

AMBER: A Modular Model for Tumor Growth, Vasculature and Radiation Response. | LitMetric

AI Article Synopsis

  • Computational models of tumor growth, especially agent-based models (ABMs), help simulate cancer progression and treatment responses, but often lack realism due to limited domains and missing factors like blood vessels.
  • AMBER (Agent-based fraMework for radioBiological Effects in Radiotherapy) overcomes these shortcomings by using a voxelized geometry for realistic simulations, integrating microenvironmental factors and combining ABM techniques with advanced radiation dose calculations from the Monte Carlo method.
  • The results from AMBER provide accurate predictions of tumor evolution and radiation outcomes, making it a valuable tool for studying tumor growth and treatment responses with the potential for future enhancements.

Article Abstract

Computational models of tumor growth are valuable for simulating the dynamics of cancer progression and treatment responses. In particular, agent-based models (ABMs) tracking individual agents and their interactions are useful for their flexibility and ability to model complex behaviors. However, ABMs have often been confined to small domains or, when scaled up, have neglected crucial aspects like vasculature. Additionally, the integration into tumor ABMs of precise radiation dose calculations using gold-standard Monte Carlo (MC) methods, crucial in contemporary radiotherapy, has been lacking. Here, we introduce AMBER, an Agent-based fraMework for radioBiological Effects in Radiotherapy that computationally models tumor growth and radiation responses. AMBER is based on a voxelized geometry, enabling realistic simulations at relevant pre-clinical scales by tracking temporally discrete states stepwise. Its hybrid approach, combining traditional ABM techniques with continuous spatiotemporal fields of key microenvironmental factors such as oxygen and vascular endothelial growth factor, facilitates the generation of realistic tortuous vascular trees. Moreover, AMBER is integrated with TOPAS, an MC-based particle transport algorithm that simulates heterogeneous radiation doses. The impact of radiation on tumor dynamics considers the microenvironmental factors that alter radiosensitivity, such as oxygen availability, providing a full coupling between the biological and physical aspects. Our results show that simulations with AMBER yield accurate tumor evolution and radiation treatment outcomes, consistent with established volumetric growth laws and radiobiological understanding. Thus, AMBER emerges as a promising tool for replicating essential features of tumor growth and radiation response, offering a modular design for future expansions to incorporate specific biological traits.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11538-024-01371-4DOI Listing

Publication Analysis

Top Keywords

tumor growth
16
radiation response
8
models tumor
8
growth radiation
8
microenvironmental factors
8
tumor
7
radiation
7
amber
6
growth
6
amber modular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!