Distinct effects of dilute acid prehydrolysate inhibitors on enzymatic hydrolysis and yeast fermentation.

Bioprocess Biosyst Eng

International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.

Published: January 2025

The effects of dilute acid prehydrolysate from poplar were investigated and compared in the enzymatic hydrolysis, fermentation, and simultaneous saccharification fermentation (SSF) in this study. The improvement of enzymatic hydrolysis and fermentation with resin adsorption and surfactant addition has also been represented. A total of 16 phenolic alcohols, aldehydes, acids and 3 furan derivatives in the prehydrolysates were identified and quantified by gas chromatography/mass spectrometry (GC/MS). The degree of inhibition from the phenolic compounds (26.55%) in prehydrolysate on the enzymatic hydrolysis was much higher than carbohydrates-derived inhibitors (0.52-4.64%). Around 40% degree of inhibition was eliminated in Avicel enzymatic hydrolysis when 75% of prehydrolysates phenolic compounds were removed by resin adsorption. This showed distinguishing inhibition degrees of various prehydrolysate phenolic compounds. Inhibition of prehydrolysate on enzymatic hydrolysis was more dosage-dependent, while their suppression on the fermentation showed a more complicated mode: fermentation could be terminated by the untreated prehydrolysate, while a small number of prehydrolysate inhibitors even improved the glucose consumption and ethanol production in the fermentation. Correlated with this distinct inhibition modes of prehydrolysate, the improvement of Tween 80 addition in SSF was around 7.10% for the final ethanol yield when the glucose accumulation was promoted by 76.6%.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00449-024-03098-xDOI Listing

Publication Analysis

Top Keywords

enzymatic hydrolysis
24
phenolic compounds
12
effects dilute
8
dilute acid
8
prehydrolysate
8
acid prehydrolysate
8
prehydrolysate inhibitors
8
hydrolysis fermentation
8
resin adsorption
8
degree inhibition
8

Similar Publications

Effect of Ultrasound Treatment on Structural and Physical Properties of Native Maize Starch.

Plant Foods Hum Nutr

January 2025

Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC) - CONICET-UNC, Av. Juan Filloy S/N, Ciudad Universitaria, Córdoba, Argentina.

The focus of this work was to evaluate the differences between the thermal and mechanical effects generated by ultrasound waves on the properties of corn starch, which facilitate the subsequent enzymatic hydrolysis for the generation of porous starches. The results showed that both the thermal and mechanical effects have the capacity to disorganize/alter the structure of starch, impacting on its properties. Characteristics such as particle size, pasting and thermal properties (peak viscosity 1400-1800 cp.

View Article and Find Full Text PDF

Acyl glucuronide (AG) is a reactive metabolite that causes idiosyncratic drug toxicity (IDT). Although the instability of AG is used to predict the IDT risk of novel drug candidates, it sometimes overestimates the IDT risk. We investigated whether the rate of enzymatic AG hydrolysis in human liver microsomes (HLM) can predict the risk of IDT.

View Article and Find Full Text PDF

This study investigates the effect of 100 mg L thymol treatment on the quality of post-harvest peppers stored at 10 °C. The results showed that thymol treatment significantly reduced decay rate, reactive oxygen species (ROS) accumulation, and saturated fatty acid levels in peppers. Moreover, unsaturated fatty acids, non-enzymatic antioxidants, and antioxidant enzyme levels increased after treatment.

View Article and Find Full Text PDF

The accurate quantification of glycemic index (GI) remains crucial for diabetes management, yet current methodologies are constrained by resource intensiveness and methodological limitations. digestion models face challenges in replicating the dynamic conditions of the human gastrointestinal tract, such as enzyme variability and multi-time point analysis, leading to suboptimal predictive accuracy. This review proposes an integrated technological framework combining non-enzymatic electrochemical sensing with artificial intelligence to revolutionize GI assessment.

View Article and Find Full Text PDF

Background: Rho GTPases are essential regulators for cellular movement and intracellular membrane trafficking. Their enzymatic activities fluctuate between active GTP-bound and inactive GDP-bound states regulated by GTPase activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs). Arhgap39/Vilse/Porf-2 is a newly identified GAP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!