A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

RPS 2.0: an updated database of RNAs involved in liquid-liquid phase separation. | LitMetric

RPS 2.0: an updated database of RNAs involved in liquid-liquid phase separation.

Nucleic Acids Res

School of Life Sciences, State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China.

Published: October 2024

Liquid-liquid phase separation (LLPS) is a crucial process for the formation of biomolecular condensates such as coacervate droplets, P-bodies and stress granules, which play critical roles in many physiological and pathological processes. Increasing studies have shown that not only proteins but also RNAs play a critical role in LLPS. To host LLPS-associated RNAs, we previously developed a database named 'RPS' in 2021. In this study, we present an updated version RPS 2.0 (https://rps.renlab.cn/) to incorporate the newly generated data and to host new LLPS-associated RNAs driven by post-transcriptional regulatory mechanisms. Currently, RPS 2.0 hosts 171 301 entries of LLPS-associated RNAs in 24 different biomolecular condensates with four evidence types, including 'Reviewed', 'High-throughput (LLPS enrichment)', 'High-throughput (LLPS perturbation)' and 'Predicted', and five event types, including 'Expression', 'APA', 'AS', 'A-to-I' and 'Modification'. Additionally, extensive annotations of LLPS-associated RNAs are provided in RPS 2.0, including RNA sequence and structure features, RNA-protein/RNA-RNA interactions, RNA modifications, as well as diseases related annotations. We expect that RPS 2.0 will further promote research of LLPS-associated RNAs and deepen our understanding of the biological functions and regulatory mechanisms of LLPS.

Download full-text PDF

Source
http://dx.doi.org/10.1093/nar/gkae951DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11701738PMC

Publication Analysis

Top Keywords

llps-associated rnas
20
liquid-liquid phase
8
phase separation
8
biomolecular condensates
8
play critical
8
host llps-associated
8
regulatory mechanisms
8
types including
8
'high-throughput llps
8
rnas
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!