AI Article Synopsis

  • - Breast cancer is a highly variable disease with complex characteristics, making it hard to detect its intratumor heterogeneity, which is essential for effective treatment and understanding progression.
  • - The study focuses on using an Immuno Nano Sensor and machine learning to analyze metabolic differences in breast tumors by examining immune cells, achieving high accuracy in distinguishing cancer from healthy tissue.
  • - The method demonstrates significant sensitivity in identifying tumor types and receptor statuses, suggesting potential for improved diagnosis and management strategies through less invasive techniques like liquid biopsies.

Article Abstract

Breast cancer is a complex and heterogeneous disease with varying cellular, genetic, epigenetic, and molecular expressions. The detection of intratumor heterogeneity in breast cancer poses significant challenges due to its complex multifaceted characteristics, yet its identification is crucial for guiding effective treatment decisions and understanding the disease progression. Currently, there exists no method capable of capturing the full extent of breast tumor heterogeneity. In this study, the aim is to identify and characterize metabolic heterogeneity in breast tumors using immune cells and an ultrafast laser-fabricated Immuno Nano Sensor. Combining spectral markers from both Natural Killer (NK) and T cells, a machine-learning approach is implemented to distinguish cancer from healthy samples, identify primary versus metastatic tumors, and determine estrogen receptor (ER)/progesterone receptor (PR) status at the single-cell level. The platform successfully distinguished heterogeneous breast cancer samples from healthy individuals, achieving 97.8% sensitivity and 92.2% specificity, and accurately identified primary tumors from metastatic tumors. Characteristic spectral signatures allow for discrimination between ER/PR-positive and negative tumors with 97.5% sensitivity. This study demonstrates the potential of immune cell-based metabolic profiling in providing a comprehensive assessment of breast tumor heterogeneity and paving the way for minimally invasive liquid biopsy approaches in breast cancer diagnosis and management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673452PMC
http://dx.doi.org/10.1002/smll.202406475DOI Listing

Publication Analysis

Top Keywords

breast cancer
20
breast tumor
12
tumor heterogeneity
12
breast
8
immuno nano
8
heterogeneity breast
8
metastatic tumors
8
cancer
6
heterogeneity
5
tumors
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!