Cathode materials are usually the key to determining battery capacity, suitable cathode materials are an important prerequisite to meet the needs of large-scale energy storage systems in the future. Polyanionic compounds have significant advantages in metal ion storage, such as high operating voltage, excellent structural stability, safety, low cost, and environmental friendliness, and can be excellent cathode options for rechargeable metal-ion batteries. Although some polyanionic compounds have been commercialized, there are still some shortcomings in electronic conductivity, reversible specific capacity, and rate performance, which obviously limits the development of polyanionic compound cathodes in large-scale energy storage systems. Up to now, many strategies including structural design, ion doping, surface coating, and electrolyte optimization have been explored to improve the above defects. Based on the above contents, this paper briefly reviews the research progress and optimization strategies of typical polyanionic compound cathodes in the fields of lithium-ion batteries (LIBs) and other promising metal ion batteries (sodium ion batteries (SIBs), potassium ion batteries (PIBs), magnesium ion batteries (MIBs), calcium ion batteries (CIBs), zinc ion batteries (ZIBs), aluminum ion batteries (AIBs), etc.), aiming to provide a valuable reference for accelerating the commercial application of polyanionic compound cathodes in rechargeable battery systems.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smtd.202400587DOI Listing

Publication Analysis

Top Keywords

ion batteries
28
compound cathodes
16
polyanionic compound
12
ion
9
batteries
9
libs promising
8
cathode materials
8
large-scale energy
8
energy storage
8
storage systems
8

Similar Publications

Electric vehicles (EVs) rely heavily on lithium-ion battery packs as essential energy storage components. However, inconsistencies in cell characteristics and operating conditions can lead to imbalanced state of charge (SOC) levels, resulting in reduced capacity and accelerated degradation. This study presents an active cell balancing method optimized for both charging and discharging scenarios, aiming to equalize SOC across cells and improve overall pack performance.

View Article and Find Full Text PDF

A Stable Solid-Electrolyte Interphase Constructed by a Nucleophilic Molecule Additive for the Zn Anode with High Utilization and Efficiency.

ACS Appl Mater Interfaces

January 2025

College of Energy, Soochow Institute for Energy and Materials Innovations, Light Industry Institute of Electrochemical Power Sources, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, Jiangsu 215006, China.

The solid-electrolyte interphase (SEI) strongly determines the stability and reversibility of aqueous Zn-ion batteries (AZIBs). In traditional electrolytes, the nonuniform SEI layer induced by severe parasitic reactions, such as the hydrogen evolution reaction (HER), will exacerbate the side reactions on Zn anodes, thus leading to low zinc utilization ratios (ZURs). Herein, we propose to use methoxy ethylamine (MOEA) as a nucleophilic additive, which has a stronger nucleophilic characteristic than water, with the advantage of an abundance of nucleophilic atoms.

View Article and Find Full Text PDF

The crosstalk of transition metal ions between the metal oxide cathode and Zn anode restricts the practical applications of aqueous zinc-ion batteries (ZIBs). Herein, we propose a decoupled electrolyte (DCE) consisting of a nonaqueous-phase (N-phase) anolyte and an aqueous-phase (A-phase) catholyte to prevent the crosstalk of Mn2+, thus extending the lifespan of MnO2-based ZIBs. Experimental measurements and theoretical modelling verify that trimethyl phosphate (TMP) not only synergistically works with NH4Cl in the N-phase anolyte to enable fast Zn2+ conduction while block Mn2+ diffusion toward anode, but also modifies the Zn2+ solvation structure to suppress the dendrite formation and corrosion on Zn anode.

View Article and Find Full Text PDF

Arginine as a multifunctional additive for high performance S-cathode.

ChemSusChem

January 2025

Washington State University, School of Mechanical and Materials Engineering, PO Box 642920, 99164-2920, Pullman, UNITED STATES OF AMERICA.

Advancement of sulfur (S) cathode of lithium-sulfur (Li-S) batteries is hindered by issues such as insulating nature of sulfur, sluggish redox kinetics, polysulfide dissolution and shuttling. To address these issues, we initiate a study on applying an important amino acid of protein, arginine (Arg), as a functional additive into S cathodes. Based on our simulation study, the positively charged Arg facilitates strong interactions with polysulfides.

View Article and Find Full Text PDF

Solvation layer effects on lithium migration in localized High-Concentration Electrolytes: Analyzing the diverse antisolvent Contributions.

J Colloid Interface Sci

December 2024

Multiscale Computational Materials Facility & Materials Genome Institute, School of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, PR China. Electronic address:

Localized high-concentration electrolytes (LHCEs) offer a new methodology to improve the functionality of conventional electrolytes. Understanding the impact of antisolvents on bulk electrolytes is critical to the construction of sophisticated LHCEs. However, the mechanism of how antisolvent modulates the electrochemical reactivity of the solvation structure in LHCEs remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!