AI Article Synopsis

  • Various short-range radars, like impulse-radio ultra-wideband (IR-UWB) and frequency-modulated continuous-wave (FMCW) radars, are used to track respiratory and cardiac rates but struggle with inaccuracies due to individual motion affecting signal phases.
  • Motion compensation (MOCOM) is essential for obtaining precise measurements of these vital signs, as it helps correct the distortions caused by movement.
  • The proposed method in the paper enhances RR and CR estimation accuracy by incorporating MOCOM and super-resolution techniques, showing successful results even when subjects are moving.

Article Abstract

Various short-range radars, such as impulse-radio ultra-wideband (IR-UWB) and frequency-modulated continuous-wave (FMCW) radars, are currently employed to monitor vital signs, including respiratory and cardiac rates (RRs and CRs). However, these methods do not consider the motion of an individual, which can distort the phase of the reflected signal, leading to inaccurate estimation of RR and CR because of a smeared spectrum. Therefore, motion compensation (MOCOM) is crucial for accurately estimating these vital rates. This paper proposes an efficient method incorporating MOCOM to estimate RR and CR with super-resolution accuracy. The proposed method effectively models the radar signal phase and compensates for motion. Additionally, applying the super-resolution technique to RR and CR separately further increases the estimation accuracy. Experimental results from the IR-UWB and FMCW radars demonstrate that the proposed method successfully estimates RRs and CRs even in the presence of body movement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511147PMC
http://dx.doi.org/10.3390/s24206765DOI Listing

Publication Analysis

Top Keywords

short-range radars
8
motion compensation
8
fmcw radars
8
rrs crs
8
proposed method
8
enhanced vital
4
vital parameter
4
parameter estimation
4
estimation short-range
4
radars
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!