Indoor Pedestrian Positioning Method Based on Ultra-Wideband with a Graph Convolutional Network and Visual Fusion.

Sensors (Basel)

Engineering Center of SHMEC for Space Information and GNSS, East China Normal University, Shanghai 200241, China.

Published: October 2024

To address the challenges of low accuracy in indoor positioning caused by factors such as signal interference and visual distortions, this paper proposes a novel method that integrates ultra-wideband (UWB) technology with visual positioning. In the UWB positioning module, the powerful feature-extraction ability of the graph convolutional network (GCN) is used to integrate the features of adjacent positioning points and improve positioning accuracy. In the visual positioning module, the residual results learned from the bidirectional gate recurrent unit (Bi-GRU) network are compensated into the mathematical visual positioning model's solution results to improve the positioning results' continuity. Finally, the two positioning coordinates are fused based on particle filter (PF) to obtain the final positioning results and improve the accuracy. The experimental results show that the positioning accuracy of the proposed UWB positioning method based on a GCN is less than 0.72 m in a single UWB positioning, and the positioning accuracy is improved by 55% compared with the Chan-Taylor algorithm. The proposed visual positioning method based on Bi-GRU and residual fitting has a positioning accuracy of 0.42 m, 71% higher than the Zhang Zhengyou visual positioning algorithm. In the fusion experiment, 80% of the positioning accuracy is within 0.24 m, and the maximum error is 0.66 m. Compared with the single UWB and visual positioning, the positioning accuracy is improved by 56% and 52%, respectively, effectively enhancing indoor pedestrian positioning accuracy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511241PMC
http://dx.doi.org/10.3390/s24206732DOI Listing

Publication Analysis

Top Keywords

positioning accuracy
28
visual positioning
24
positioning
22
positioning method
12
method based
12
uwb positioning
12
accuracy
9
indoor pedestrian
8
pedestrian positioning
8
graph convolutional
8

Similar Publications

Comparative Analysis of Physiological Vergence Angle Calculations from Objective Measurements of Gaze Position.

Sensors (Basel)

December 2024

Department of Optometry and Vision Science, Faculty of Science and Technology, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia.

Eccentric photorefractometry is widely used to measure eye refraction, accommodation, gaze position, and pupil size. While the individual calibration of refraction and accommodation data has been extensively studied, gaze measurements have received less attention. PowerRef 3 does not incorporate individual calibration for gaze measurements, resulting in a divergent offset between the measured and expected gaze positions.

View Article and Find Full Text PDF

Human pose estimation is an important research direction in the field of computer vision, which aims to accurately identify the position and posture of keypoints of the human body through images or videos. However, multi-person pose estimation yields false detection or missed detection in dense crowds, and it is still difficult to detect small targets. In this paper, we propose a Mamba-based human pose estimation.

View Article and Find Full Text PDF

Towards an Accurate Real-Time Digital Elevation Model Using Various GNSS Techniques.

Sensors (Basel)

December 2024

Engineering Surveying Department, College of Engineering Sciences, Omdurman Islamic University, Khartoum 11111, Sudan.

The objective of our research is to produce a digital elevation model (DEM) in a real-time domain. For this purpose, GNSS measurements are obtained from a kinematic trajectory in a clear location in New Aswan City, Egypt. Different real-time processing solutions are employed, including real-time precise point positioning (RT-PPP) and real-time kinematics (RTK); additionally, the widely used post-processed precise point positioning (PPP) processing scenario is used.

View Article and Find Full Text PDF

Inspection robots, which improve hazard identification and enhance safety management, play a vital role in the examination of high-risk environments in many fields, such as power distribution, petrochemical, and new energy battery factories. Currently, the position precision of the robots is a major barrier to their broad application. Exact kinematic model and control system of the robots is required to improve their location accuracy during movement on the unstructured surfaces.

View Article and Find Full Text PDF

Corrosion damage presents significant challenges to the safety and reliability of connected vehicles. However, traditional non-destructive methods often fall short when applied to complex automotive structures, such as bolted lap joints. To address this limitation, this study introduces a novel corrosion monitoring approach using Lamb wave-based weighted fusion imaging methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!