Structural composite materials have gained significant appeal because of their ability to be customized for specific mechanical qualities for various applications, including avionics, wind turbines, transportation, and medical equipment. Therefore, there is a growing demand for effective and non-invasive structural health monitoring (SHM) devices to supervise the integrity of materials. This work introduces a novel sensor design, consisting of three spiral resonators optimized to operate at distinct frequencies and excited by a feeding strip line, capable of performing non-destructive structural strain monitoring via frequency coding. The initial discussion focuses on the analytical modeling of the sensor, which is based on a circuital approach. A numerical test case is developed to operate across the frequency range of 100 to 400 MHz, selected to achieve a balance between penetration depth and the sensitivity of the system. The encouraging findings from electromagnetic full-wave simulations have been confirmed by experimental measurements conducted on printed circuit board (PCB) prototypes embedded in a fiberglass-based composite sample. The sensor shows exceptional sensitivity and cost-effectiveness, and may be easily integrated into composite layers due to its minimal cabling requirements and extremely small profile. The particular frequency-coded configuration enables the suggested sensor to accurately detect and distinguish various structural deformations based on their severity and location.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510848 | PMC |
http://dx.doi.org/10.3390/s24206725 | DOI Listing |
J Pharm Anal
November 2024
College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
The quality of Chinese materia medica (CMM) is a challenging and focused topic in the modernization of traditional Chinese medicine (TCM). A profound comprehension of the morphology, structure, active constituents, and dynamic changes during the whole process of CMM growth is essential, which needs highly precise contemporary techniques for in-depth elucidation. Magnetic resonance imaging (MRI) is a cutting-edge tool integrating the benefits of both nuclear magnetic resonance (NMR) spectroscopy and imaging technology.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Plant Biology, Faculty of Science, University of Yaounde I, P.O. Box: 812, Yaounde, Cameroon.
Understanding Atlantic tropical forests' ecological dynamics and carbon storage potential in Cameroon is crucial for guiding sustainable management and conservation strategies. These forests play a significant role in carbon sequestration and biodiversity conservation. This study aimed to fill existing knowledge gaps by characterising plant communities, assessing the vegetation structure, and quantifying the potential of carbon stocks.
View Article and Find Full Text PDFSci Rep
January 2025
Łukasiewicz Research Network, Krakow Institute of Technology, Zakopiańska 73 Str, Krakow, 30-418, Poland.
Ultrasonics
December 2024
Faculty of Information Technology, Beijing University of Technology, Beijing, China.
The thickness loss caused by corrosion is a vital factor that threatens the health of shell structures. It is significant to perform a non-destructive quantitative evaluation of corrosion-thinning defects in plate structures. Based on the laser ultrasonic guided wavefield scanning technology, this paper proposes an instantaneous wavenumber multi-shot fusion method, which improves the performance of the instantaneous wavenumber imaging method.
View Article and Find Full Text PDFUltrasonics
December 2024
NDT&E Laboratory, Dalian University of Technology, Dalian 116085, China. Electronic address:
Ultrasonic time-of-flight diffraction (TOFD) technique is applied to non-destructive testing in engineering, but the dead zone influences its applicable range. Alternative TOFD techniques adopt the indirect diffracted waves having long propagation times to decouple from the lateral wave and detect near-surface defects. It should be noted that the applicability of these diffracted waves varies with parameter conditions employed for detection, e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!