A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Remote Sensing Inversion of Water Quality Grades Using a Stacked Generalization Approach. | LitMetric

Remote Sensing Inversion of Water Quality Grades Using a Stacked Generalization Approach.

Sensors (Basel)

College of Geographical Sciences, Harbin Normal University, Harbin 150025, China.

Published: October 2024

Understanding water quality is crucial for environmental management and policy formulation. However, existing methods for assessing water quality are often unable to fully integrate with multi-source remote sensing data. This study introduces a method that employs a stacking algorithm within the Google Earth Engine (GEE) for classifying water quality grades in the Songhua River Basin (SHRB). By leveraging the strengths of multiple machine learning models, the Stacked Generalization (SG) model achieved an accuracy of 91.67%, significantly enhancing classification performance compared to traditional approaches. Additionally, the analysis revealed substantial correlations between the normalized difference vegetation index (NDVI) and precipitation with water quality grades. These findings underscore the efficacy of this method for effective water quality monitoring and its implications for understanding the influence of natural factors on water pollution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510757PMC
http://dx.doi.org/10.3390/s24206716DOI Listing

Publication Analysis

Top Keywords

water quality
24
quality grades
12
remote sensing
8
stacked generalization
8
water
7
quality
6
sensing inversion
4
inversion water
4
grades stacked
4
generalization approach
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!