As gestures play an important role in human communication, there have been a number of service robots equipped with a pair of human-like arms for gesture-based human-robot interactions. However, the arms of most human companion robots are limited to slow and simple gestures due to the low maximum velocity of the arm actuators. In this work, we present the JF-2 robot, a mobile home service robot equipped with a pair of torque-controlled anthropomorphic arms. Thanks to the low inertia design of the arm, responsive Quasi-Direct Drive (QDD) actuators, and active compliant control of the joints, the robot can replicate fast human dance motions while being safe in the environment. In addition to the JF-2 robot, we also present the JF-mini robot, a scaled-down, low-cost version of the JF-2 robot mainly targeted for commercial use at kindergarten and childcare facilities. The suggested system is validated by performing three experiments, a safety test, teaching children how to dance along to the music, and bringing a requested item to a human subject.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511178 | PMC |
http://dx.doi.org/10.3390/s24206704 | DOI Listing |
Sensors (Basel)
October 2024
Electrical Engineering Department, Pusan National University, Busan 43241, Republic of Korea.
As gestures play an important role in human communication, there have been a number of service robots equipped with a pair of human-like arms for gesture-based human-robot interactions. However, the arms of most human companion robots are limited to slow and simple gestures due to the low maximum velocity of the arm actuators. In this work, we present the JF-2 robot, a mobile home service robot equipped with a pair of torque-controlled anthropomorphic arms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!