In the field of railroad safety, the effective detection of surface cracks is critical, necessitating reliable, high-speed, non-destructive testing (NDT) methods. This study introduces a hybrid Eddy Current Testing (ECT) probe, specifically engineered for railroad inspection, to address the common issue of "lift-off noise" due to varying distances between the probe and the test material. Unlike traditional ECT methods, this probe integrates transmit and differential receiver (Tx-dRx) coils, aiming to enhance detection sensitivity and minimise the lift-off impact. The study optimises ECT probes employing different transmitter coils, emphasising three main objectives: (a) quantitatively evaluating each probe using signal-to-noise ratio (SNR) and outlining a real-time data-processing algorithm based on SNR methodology; (b) exploring the frequency range proximal to the electrical resonance of the receiver coil; and (c) examining sensitivity variations across varying lift-off distances. The experimental outcomes indicate that the newly designed probe with a figure-8 shaped transmitter coil significantly improves sensitivity in detecting surface cracks on railroads. It achieves an impressive SNR exceeding 100 for defects with minimal dimensions of 1 mm in width and depth. The simulation results closely align with experimental findings, validating the investigation of the optimal operational frequency and lift-off distance for selected probe performance, which are determined to be 0.3 MHz and 1 mm, respectively. The realisation of this project would lead to notable advancements in enhancing railroad safety by improving the efficiency of crack detection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511076 | PMC |
http://dx.doi.org/10.3390/s24206702 | DOI Listing |
Heliyon
November 2024
Department of Civil, Environmental, and Geospatial Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA.
In 2022, 2034 incidents occurred at highway-rail grade crossings (HRGCs) in the United States, posing significant risks such as fatalities, injuries, and property damage. These incidents underscore the need for effective prevention and mitigation strategies. With over 212,000 public and private HRGCs nationwide, safety monitoring is challenging, as traditional inspections primarily rely on manual assessments.
View Article and Find Full Text PDFSensors (Basel)
October 2024
Department of Intelligent Manufacturing Engineering, Guilin University of Electronic Technology, Guilin 541004, China.
In the field of railroad safety, the effective detection of surface cracks is critical, necessitating reliable, high-speed, non-destructive testing (NDT) methods. This study introduces a hybrid Eddy Current Testing (ECT) probe, specifically engineered for railroad inspection, to address the common issue of "lift-off noise" due to varying distances between the probe and the test material. Unlike traditional ECT methods, this probe integrates transmit and differential receiver (Tx-dRx) coils, aiming to enhance detection sensitivity and minimise the lift-off impact.
View Article and Find Full Text PDFPLoS One
June 2024
Beijing University of Technology, Beijing, 100124, China.
The escalating passenger flow in subway systems presents significant challenges to station facilities during peak hours. Poorly designed station facilities can reduce passenger throughput efficiency and compromise passenger safety. This study conducts on-site investigations to extract refined parameters of passenger behaviors in security check and ticket checking areas.
View Article and Find Full Text PDFMaterials (Basel)
March 2024
Department of Construction Engineering, Dongyang University, No. 145 Dongyangdae-ro, Punggi-eup, Yeongju-si 36040, Gyeongsangbuk-do, Republic of Korea.
Front Public Health
February 2024
Department of Civil Engineering, Henan Polytechnic University, Jiaozuo, Henan, China.
Numerous subway projects are planned by China's city governments, and more subways can hardly avoid under-crossing rivers. While often being located in complex natural and social environments, subway shield construction under-crossing a river (SSCUR) is more susceptible to safety accidents, causing substantial casualties, and monetary losses. Therefore, there is an urgent need to investigate safety risks during SSCUR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!