With the advent of robotics and artificial intelligence, the potential for automating tasks within human-centric environments has increased significantly. This is particularly relevant in the retail sector where the demand for efficient operations and the shortage of labor drive the need for rapid advancements in robot-based technologies. Densely packed retail shelves pose unique challenges for robotic manipulation and detection due to limited space and diverse object shapes. Vacuum-based grasping technologies offer a promising solution but face challenges with object shape adaptability. The study proposes a framework for robotic grasping in retail environments, an adaptive vacuum-based grasping solution, and a new evaluation metric-termed grasp shear force resilience-for measuring the effectiveness and stability of the grasp during manipulation. The metric provides insights into how retail objects behave under different manipulation scenarios, allowing for better assessment and optimization of robotic grasping performance. The study's findings demonstrate the adaptive suction cups' ability to successfully handle a wide range of object shapes and sizes, which, in some cases, overcome commercially available solutions, particularly in adaptability. Additionally, the grasp shear force resilience metric highlights the effects of the manipulation process, such as in shear force and shake, on the manipulated object. This offers insights into its interaction with different vacuum cup grasping solutions in retail picking and restocking scenarios.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510861 | PMC |
http://dx.doi.org/10.3390/s24206687 | DOI Listing |
J Colloid Interface Sci
December 2024
Dept. of Engineering, University of Campania Luigi Vanvitelli, Real Casa dell'Annunziata, via Roma 29, 81031 Aversa, CE, Italy. Electronic address:
Hypothesis: The porosity affects the rheological response of porous particle suspensions.
Experiments: Non-Brownian suspensions of porous particles immersed in a Newtonian Polyisobutene are investigated. Three different particles, with different porosity, pore structure and similar size, and non-porous irregular particles are used.
Int Dent J
December 2024
Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Faculty of Dentistry, Department of Anatomy, Chulalongkorn University, Bangkok, Thailand.
Human periodontal ligament (hPDL) is continuously exposed to mechanical forces that can induce inflammatory responses in resident stem cells (hPDLSCs). Here, we review the impact of mechanical force on hPDLSCs, focusing on the activation of inflammatory cytokines and related signalling pathways, which subsequently influence periodontal tissue remodelling. The effects of various mechanical forces, including compressive, shear, and tensile forces, on hPDLSCs are discussed.
View Article and Find Full Text PDFOsteoarthritis Cartilage
December 2024
Department of Oral Anatomy and Physiology and TMD, College of Stomatology, the Fourth Military Medical University. Xi'an, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China. Electronic address:
Objective: Abnormal mechanical stress is intimately coupled with osteoarthritis (OA). Microtubules play a vital role in the regulation of mechanotransduction and intracellular transport. The purpose of the present study was to investigate the impact of stress-induced microtubule impairment on intracellular transport and lipid droplet (LD) accumulation in chondrocytes.
View Article and Find Full Text PDFJ Am Soc Nephrol
December 2024
National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland.
Biomimetics (Basel)
December 2024
Heilongjiang Construction Investment Group Co., Ltd., Harbin 150046, China.
The bio-inspired honeycomb column thin-walled structure (BHTS) is inspired by the biological structure of beetle elytra and designed as a lightweight buffer interlayer to prevent damage to the reinforced concrete bridge pier (RCBP) under the overload impact from vehicle impact. According to the prototype structure of the pier, a batch of scale models with a scaling factor of 1:10 was produced. The BHTS buffer interlayer was installed on the reinforced concrete (RC) column specimen to carry out the steel ball impact test.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!