UNeXt: An Efficient Network for the Semantic Segmentation of High-Resolution Remote Sensing Images.

Sensors (Basel)

College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China.

Published: October 2024

The application of deep neural networks for the semantic segmentation of remote sensing images is a significant research area within the field of the intelligent interpretation of remote sensing data. The semantic segmentation of remote sensing images holds great practical value in urban planning, disaster assessment, the estimation of carbon sinks, and other related fields. With the continuous advancement of remote sensing technology, the spatial resolution of remote sensing images is gradually increasing. This increase in resolution brings about challenges such as significant changes in the scale of ground objects, redundant information, and irregular shapes within remote sensing images. Current methods leverage Transformers to capture global long-range dependencies. However, the use of Transformers introduces higher computational complexity and is prone to losing local details. In this paper, we propose UNeXt (UNet+ConvNeXt+Transformer), a real-time semantic segmentation model tailored for high-resolution remote sensing images. To achieve efficient segmentation, UNeXt uses the lightweight ConvNeXt-T as the encoder and a lightweight decoder, Transnext, which combines a Transformer and CNN (Convolutional Neural Networks) to capture global information while avoiding the loss of local details. Furthermore, in order to more effectively utilize spatial and channel information, we propose a SCFB (SC Feature Fuse Block) to reduce computational complexity while enhancing the model's recognition of complex scenes. A series of ablation experiments and comprehensive comparative experiments demonstrate that our method not only runs faster than state-of-the-art (SOTA) lightweight models but also achieves higher accuracy. Specifically, our proposed UNeXt achieves 85.2% and 82.9% mIoUs on the Vaihingen and Gaofen5 (GID5) datasets, respectively, while maintaining 97 fps for 512 × 512 inputs on a single NVIDIA GTX 4090 GPU, outperforming other SOTA methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510939PMC
http://dx.doi.org/10.3390/s24206655DOI Listing

Publication Analysis

Top Keywords

remote sensing
32
sensing images
24
semantic segmentation
16
remote
8
high-resolution remote
8
sensing
8
neural networks
8
segmentation remote
8
capture global
8
computational complexity
8

Similar Publications

Characterization of Hazelnut Trees in Open Field Through High-Resolution UAV-Based Imagery and Vegetation Indices.

Sensors (Basel)

January 2025

Department of Control and Computer Engineering (DAUIN), Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy.

The increasing demand for hazelnut kernels is favoring an upsurge in hazelnut cultivation worldwide, but ongoing climate change threatens this crop, affecting yield decreases and subject to uncontrolled pathogen and parasite attacks. Technical advances in precision agriculture are expected to support farmers to more efficiently control the physio-pathological status of crops. Here, we report a straightforward approach to monitoring hazelnut trees in an open field, using aerial multispectral pictures taken by drones.

View Article and Find Full Text PDF

The Loess Plateau in northwest China features fragmented terrain and is prone to landslides. However, the complex environment of the Loess Plateau, combined with the inherent limitations of convolutional neural networks (CNNs), often results in false positives and missed detection for deep learning models based on CNNs when identifying landslides from high-resolution remote sensing images. To deal with this challenge, our research introduced a CNN-transformer hybrid network.

View Article and Find Full Text PDF

Extracting fragmented cropland is essential for effective cropland management and sustainable agricultural development. However, extracting fragmented cropland presents significant challenges due to its irregular and blurred boundaries, as well as the diversity in crop types and distribution. Deep learning methods are widely used for land cover classification.

View Article and Find Full Text PDF

The Chang'e-6 (CE-6) landing area on the far side of the Moon is located in the southern part of the Apollo basin within the South Pole-Aitken (SPA) basin. The statistical analysis of impact craters in this region is crucial for ensuring a safe landing and supporting geological research. Aiming at existing impact crater identification problems such as complex background, low identification accuracy, and high computational costs, an efficient impact crater automatic detection model named YOLOv8-LCNET (YOLOv8-Lunar Crater Net) based on the YOLOv8 network is proposed.

View Article and Find Full Text PDF

Recent advancements in Earth Observation sensors, improved accessibility to imagery and the development of corresponding processing tools have significantly empowered researchers to extract insights from Multisource Remote Sensing. This study aims to use these technologies for mapping summer and winter Land Use/Land Cover features in Cuenca de la Laguna Merín, Uruguay, while comparing the performance of Random Forests, Support Vector Machines, and Gradient-Boosting Tree classifiers. The materials include Sentinel-2, Sentinel-1 and Shuttle Radar Topography Mission imagery, Google Earth Engine, training and validation datasets and quoted classifiers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!