Reconfigurable intelligent surfaces (RISs) are a promising technology for sixth-generation (6G) wireless networks. However, a fully passive RIS cannot independently process signals. Wireless systems equipped with it often encounter the challenge of large channel matrix dimensions when acquiring channel state information using pilot-assisted algorithms, resulting in high pilot overhead. To address this issue, this article proposes a semi-blind joint channel and symbol estimation receiver without a pilot training stage for RIS-aided multiple-input multiple-output (MIMO) (including massive MIMO) communication systems. In a semi-blind system, a transmission symbol matrix and two channel matrices are coupled within the received signals at the base station (BS). We decouple them by building two parallel factor (PARAFAC) tensor models. Leveraging PARAFAC tensor decomposition, we transform the joint channel and symbol estimation problem into least square (LS) problems, which can be solved by Alternating Least Squares (ALSs). Our proposed scheme allows duplex communication. Compared to recently proposed pilot-based methods and semi-blind receivers, our results demonstrate the superior performance of our proposed algorithm in estimation accuracy and speed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511039 | PMC |
http://dx.doi.org/10.3390/s24206625 | DOI Listing |
iScience
January 2025
IRCCS E. Medea Scientific Institute, Epilepsy Unit, 31015 Conegliano (TV), Italy.
Temporal lobe epilepsy (TLE) is characterized by alterations of brain dynamic on a large-scale associated with altered cognitive functioning. Here, we aimed at analyzing dynamic reconfiguration of brain activity, using the neural fingerprint approach, to delineate subject-specific characteristics and their cognitive correlates in TLE. We collected 10 min of resting-state scalp-electroencephalography (EEG, 128 channels), free from epileptiform activity, from 68 TLE patients and 34 controls.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Photovoltaic Science and Technology, Department of Materials Science, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China.
Ferroelectric semiconductors have the advantages of switchable polarization ferroelectric field regulation and semiconductor transport characteristics, which are highly promising in ferroelectric transistors and nonvolatile memory. However, it is difficult to prepare a Sn-based perovskite film with both robust ferroelectric and semiconductor properties. Here, by doping with 2-methylbenzimidazole, Sn-based perovskite [93.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Retinomorphic systems that can see, recognize, and respond to real-time environmental information will extend the complexity and range of tasks that an exoskeleton robot can perform to better assist physically disabled people. However, the lack of ultrasensitive, reconfigurable, and large-scale integratable retinomorphic devices and advanced edge-processing algorithms makes it difficult to realize retinomorphic hardware. Here, we report the retinomorphic hardware prototype with a 4096-pixel perovskite image sensor array as core module to endow embodied intelligent vision functionalities.
View Article and Find Full Text PDFSci Rep
January 2025
School of EEE, SASTRA University, Thanjavur, Tamil Nadu, India.
Nat Commun
January 2025
State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
The continuous push for high-performance photonic switches is one of the most crucial premises for the sustainable scaling of programmable and reconfigurable photonic circuits for a wide spectrum of applications. Conventional optical switches rely on the perturbative mechanisms of mode coupling or mode interference, resulting in inherent bottlenecks in their switching performance concerning size, power consumption and bandwidth. Here we propose and realize a silicon photonic 2×2 elementary switch based on a split waveguide crossing (SWX) consisting of two halves.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!