In an aging society, the need for efficient emergency detection systems in smart homes is becoming increasingly important. For elderly people living alone, technical solutions for detecting emergencies are essential to receiving help quickly when needed. Numerous solutions already exist based on wearable or ambient sensors. However, existing methods for emergency detection typically assume that sensor data are error-free and contain no false positives, which cannot always be guaranteed in practice. Therefore, we present a novel method for detecting emergencies in private households that detects unusually long inactivity periods and can process erroneous or uncertain activity information. We introduce the , which provides a probabilistic weighting of inactivity periods based on the reliability of sensor measurements. By analyzing historical Inactivity Scores, anomalies that potentially represent an emergency can be identified. The proposed method is compared with four related approaches on seven different datasets. Our method surpasses existing approaches when considering the number of false positives and the mean time to detect emergencies. It achieves an average detection time of approximately 05:23:28 h with only 0.09 false alarms per day under noise-free conditions. Moreover, unlike related approaches, the proposed method remains effective with noisy data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511007 | PMC |
http://dx.doi.org/10.3390/s24206583 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!