Rolling bearing is the core component of industrial machines, but it is difficult for common single signal source-based fault diagnosis methods to ensure reliable results since sensor signals are vulnerable to the pollution of background noises and the attenuation of transmitted information. Recently, multi-source information-based fault diagnosis methods have become popular, but the information redundancy between multiple signals is a tough problem that will negatively impact the representational capacity of deep learning algorithms and the precision of fault diagnosis methods. Besides that, the characteristics of various signals are actually different, but this problem was usually omitted by researchers, and it has potential to further improve the diagnosing performance by adaptively adjusting the feature extraction process for every input signal source. Aimed at solving the above problems, a novel model for bearing fault diagnosis called multi-branch selective fusion deep residual network is proposed in this paper. The model adopts a multi-branch structure design to enable every input signal source to have a unique feature processing channel, avoiding the information of multiple signal sources blindly coupled by convolution kernels. And in each branch, different convolution kernel sizes are assigned according to the characteristics of every input signal, fully digging the precious fault components on respective information sources. Lastly, the dropout technique is used to randomly throw out some activated neurons, alleviating the redundancy and enhancing the quality of the multiscale features extracted from different signals. The proposed method was experimentally compared with other intelligent methods on two authoritative public bearing datasets, and the experimental results prove the feasibility and superiority of the proposed model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511150PMC
http://dx.doi.org/10.3390/s24206581DOI Listing

Publication Analysis

Top Keywords

fault diagnosis
20
diagnosis methods
12
input signal
12
multi-source information-based
8
bearing fault
8
multi-branch selective
8
selective fusion
8
fusion deep
8
deep residual
8
residual network
8

Similar Publications

Temporal logic inference for interpretable fault diagnosis of bearings via sparse and structured neural attention.

ISA Trans

January 2025

State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:

This paper addresses the critical challenge of interpretability in machine learning methods for machine fault diagnosis by introducing a novel ad hoc interpretable neural network structure called Sparse Temporal Logic Network (STLN). STLN conceptualizes network neurons as logical propositions and constructs formal connections between them using specified logical operators, which can be articulated and understood as a formal language called Weighted Signal Temporal Logic. The network includes a basic word network using wavelet kernels to extract intelligible features, a transformer encoder with sparse and structured neural attention to locate informative signal segments relevant to decision-making, and a logic network to synthesize a coherent language for fault explanation.

View Article and Find Full Text PDF

Centrifugal compressors are widely used in the oil and natural gas industry for gas compression, reinjection, and transportation. Fault diagnosis and identification of centrifugal compressors are crucial. To promptly monitor abnormal changes in compressor data and trace the causes leading to these data anomalies, this paper proposes a security monitoring and root cause tracing method for compressor data anomalies.

View Article and Find Full Text PDF

Condition monitoring and fault classification in engineering systems is a critical challenge within the scope of Prognostics and Health Management (PHM). The fault diagnosis of complex nonlinear systems, such as hydraulic systems, has become increasingly important due to advancements in big data analytics, machine learning (ML), Industry 4.0, and Internet of Things (IoT) applications.

View Article and Find Full Text PDF

A novel swarm budorcas taxicolor optimization-based multi-support vector method for transformer fault diagnosis.

Neural Netw

January 2025

School of Automation Science and Engineering, South China University of Technology, Guangzhou, 510640, China; Key Laboratory of Autonomous Systems and Network Control, Ministry of Education, South China University of Technology, Guangzhou, 510640, China; Institute for Super Robotics (Huangpu), Guangzhou, 510555, China; Nanchang University, Nanchang, 330031, China; College of Computer Science and Engineering, Jishou University, Jishou, 416000, China; Guangdong Artificial Intelligence and Digital Economy Laboratory (Pazhou Lab), Guangzhou, 510335, China; School of Electronical Engineering, Shaanxi University of Technology, Hanzhong, 723001, China; School of Information Science and Engineering, Changsha Normal University, Changsha, 410100, China; Institute of Artificial Intelligence and Automation, Guangdong University of Petrochemical Technology, Maoming, 525000, China. Electronic address:

To address the challenge of low recognition accuracy in transformer fault detection, a novel method called swarm budorcas taxicolor optimization-based multi-support vector (SBTO-MSV) is proposed. Firstly, a multi-support vector (MSV) model is proposed to realize multi-classification of transformer faults based on dissolved gas data. Then, a swarm budorcas taxicolor optimization (SBTO) algorithm is proposed to iteratively search the optimal model parameters during MSV model training, so as to obtain the most effective transformer fault diagnosis model.

View Article and Find Full Text PDF

Research on bearing fault diagnosis based on a multimodal method.

Math Biosci Eng

December 2024

School of Information Engineering, Nantong Institute of Technology, Nantong 226002, Jiangsu, China.

As an essential component of mechanical systems, bearing fault diagnosis is crucial to ensure the safe operation of the equipment. However, vibration data from bearings often exhibit non-stationary and nonlinear features, which complicates fault diagnosis. To address this challenge, this paper introduces a novel multi-scale time-frequency and statistical features fusion model (MTSF-FM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!