Acoustic distance sensors have a long history of use to detect subaqueous bedforms. There have been few comparable applications for aeolian bedforms such as ripples. To address this, we developed a simple and reliable apparatus comprising a pair of distance sensors, a bracket upon which they are mounted, and a base upon which the bracket can slide. Our system relies on two Senix Corporation (Hinesburg, VT, USA), ToughSonic model 14-TSPC-30S1-232 acoustic distance sensors: one to measure surface elevation changes (in this case, ripple morphology) and a second to measure horizontal location. The ToughSonic vertical resolution was 0.22 mm and the horizontal scan distance was about 0.60 m with a locational accuracy of 0.22 mm. The measurement rate was 20 Hz, but we over-sampled at 1 KHz. Signal processing involves converting volts to meters, detrending the data, and removing noise. Analysis produces ripple morphologies and migration rates that conform with independent measurements. The advantages of this system relative to terrestrial laser scanning or structure from motion are described.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511439 | PMC |
http://dx.doi.org/10.3390/s24206555 | DOI Listing |
Adv Mater
January 2025
Henry Royce Institute and Photon Science Institute, Department of Electrical and Electronic Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
As human-machine interface hardware advances, better sensors are required to detect signals from different stimuli. Among numerous technologies, humidity sensors are critical for applications across different sectors, including environmental monitoring, food production, agriculture, and healthcare. Current humidity sensors rely on materials that absorb moisture, which can take some time to equilibrate with the surrounding environment, thus slowing their temporal response and limiting their applications.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Natural and Engineering Sciences, College of Applied Studies and Community Services, King Saud University, Riyadh, 11543, Saudi Arabia.
Underwater environmental exploration using sensor nodes has emerged as a critical endeavor fraught with challenges such as localization errors, energy, and costs attributed to the dynamic nature of underwater environments. This paper proposes a KNN-based cost-efficient machine-learning algorithm aimed at optimizing underwater context acquisition with sensor nodes. By addressing existing localization challenges, the algorithm minimizes localization errors, energy consumption and Time costs while significantly enhancing localization accuracy to 99.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States.
We report a Tuning Fork Scanning Electrochemical Cell Microscopy (TF-SECCM) technique for providing morphological and electrochemical information on single redox-active entities. This new operation configuration of SECCM utilizes an electrolyte-filled nanopipette tip mounted onto a tuning fork force sensor to obtain a precise tip-sample distance control and surface morphological mapping capabilities. Redox activities of regions of interest (ROIs) can be investigated by scanning electrode potential by moving the nanopipette to any target regions while maintaining the constant force engagement of the tip with the sample.
View Article and Find Full Text PDFACS Nano
January 2025
IBM Almaden Research Center, San Jose 95120-6099, California, United States.
Controlling spin-polarized currents at the nanoscale is of immense importance for high-density magnetic data storage and spin-based logic devices. As electronic devices are miniaturized to the ultimate limit of individual atoms and molecules, electronic transport is strongly influenced by the properties of the individual spin centers and their magnetic interactions. In this work, we demonstrate the precise control and detection of spin-polarized currents through two coupled spin centers at a tunnel junction by controlling their spin-spin interactions.
View Article and Find Full Text PDFTalanta
January 2025
Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong, 515063, P.R. China; Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Shantou, Guangdong, 515063, P.R. China; Analysis & Testing Center, Shantou University, Shantou, Guangdong, 515063, P.R. China. Electronic address:
CYFRA21-1 is a tumor marker for lung cancer, and its rapid and accurate detection can provide evidence for the early diagnosis of lung cancer. In this work, Bi-Fe turnbull blue analogues (Bi-Fe-TBA) were synthesized by the self-templating method. BiO-SFNs was prepared by simple oxidation in air using Bi-Fe-TBA as a template.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!