A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multi-Feature-Filtering-Based Road Curb Extraction from Unordered Point Clouds. | LitMetric

Multi-Feature-Filtering-Based Road Curb Extraction from Unordered Point Clouds.

Sensors (Basel)

Shanghai Tongke Transportation Technology Co., Ltd., Shanghai 200092, China.

Published: October 2024

Road curb extraction is a critical component of road environment perception, being essential for calculating road geometry parameters and ensuring the safe navigation of autonomous vehicles. The existing research primarily focuses on extracting curbs from ordered point clouds, which are constrained by their structure of point cloud organization, making it difficult to apply them to unordered point cloud data and making them susceptible to interference from obstacles. To overcome these limitations, a multi-feature-filtering-based method for curb extraction from unordered point clouds is proposed. This method integrates several techniques, including the grid height difference, normal vectors, clustering, an alpha-shape algorithm based on point cloud density, and the MSAC (M-Estimate Sample Consensus) algorithm for multi-frame fitting. The multi-frame fitting approach addresses the limitations of traditional single-frame methods by fitting the curb contour every five frames, ensuring more accurate contour extraction while preserving local curb features. Based on our self-developed dataset and the Toronto dataset, these methods are integrated to create a robust filter capable of accurately identifying curbs in various complex scenarios. Optimal threshold values were determined through sensitivity analysis and applied to enhance curb extraction performance under diverse conditions. Experimental results demonstrate that the proposed method accurately and comprehensively extracts curb points in different road environments, proving its effectiveness and robustness. Specifically, the average curb segmentation precision, recall, and F1 score values across scenarios A, B (intersections), C (straight road), and scenarios D and E (curved roads and ghosting) are 0.9365, 0.782, and 0.8523, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511513PMC
http://dx.doi.org/10.3390/s24206544DOI Listing

Publication Analysis

Top Keywords

curb extraction
16
unordered point
12
point clouds
12
point cloud
12
curb
8
road curb
8
extraction unordered
8
proposed method
8
multi-frame fitting
8
point
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!