AI Article Synopsis

Article Abstract

The rapid growth of marine industries has emphasized the focus on environmental impacts for all industries, as well as the influence of key environmental parameters on, for instance, offshore wind or aquaculture performance, animal welfare and structural integrity of different constructions. Development of automatized sensors together with efficient communication and information systems will enhance surveillance and monitoring of environmental processes and impact. We have developed a modular Smart Ocean observatory, in this case connected to a large-scale marine aquaculture research facility. The first sensor rigs have been operational since May 2022, transmitting environmental data in near real-time. Key components are Acoustic Doppler Current Profilers (ADCPs) for measuring directional wave and current parameters, and CTDs for redundant measurement of depth, temperature, conductivity and oxygen. Communication is through 4G network or cable. However, a key purpose of the observatory is also to facilitate experiments with acoustic wireless underwater communication, which are ongoing. The aim is to expand the system(s) with demersal independent sensor nodes communicating through an "Internet of Underwater Things (IoUT)", covering larger areas in the coastal zone, as well as open waters, of benefit to all ocean industries. The observatory also hosts experiments for sensor development, biofouling control and strategies for sensor self-validation and diagnostics. The close interactions between the experiments and the infrastructure development allow a holistic approach towards environmental monitoring across sectors and industries, plus to reduce the carbon footprint of ocean observation. This work is intended to lay a basis for sophisticated use of smart sensors with communication systems in long-term autonomous operation in remote as well as nearshore locations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510905PMC
http://dx.doi.org/10.3390/s24206530DOI Listing

Publication Analysis

Top Keywords

modular smart
8
smart ocean
8
ocean observatory
8
underwater communication
8
environmental parameters
8
communication systems
8
environmental
6
communication
5
ocean
4
observatory
4

Similar Publications

Smart textiles that integrate multiple environmental sensing capabilities are an emerging frontier in wearable technology. In this study, we developed dual pH- and temperature-responsive textiles by combining engineered bacterial systems with bacterially derived proteins. For temperature sensing, we characterized the properties of a heat sensitive promoter, P, in () using enhanced green fluorescent protein as a reporter.

View Article and Find Full Text PDF

Tri-Prism Origami Enabled Soft Modular Actuator for Reconfigurable Robots.

Soft Robot

January 2025

Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China.

Soft actuators hold great potential for applications in surgical operations, robotic manipulation, and prosthetic devices. However, they are limited by their structures, materials, and actuation methods, resulting in disadvantages in output force and dynamic response. This article introduces a soft pneumatic actuator capable of bending based on triangular prism origami.

View Article and Find Full Text PDF

Integration of ordered porous materials for targeted three-component gas separation.

Nat Commun

January 2025

Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China.

Separation of multi-component mixtures in an energy-efficient manner has important practical impact in chemical industry but is highly challenging. Especially, targeted simultaneous removal of multiple impurities to purify the desired product in one-step separation process is an extremely difficult task. We introduced a pore integration strategy of modularizing ordered pore structures with specific functions for on-demand assembly to deal with complex multi-component separation systems, which are unattainable by each individual pore.

View Article and Find Full Text PDF

Additively Manufactured Flexible EGaIn Sensor for Dynamic Detection and Sensing on Ultra-Curved Surfaces.

Sensors (Basel)

December 2024

Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China.

Electronic skin is widely employed in multiple applications such as health monitoring, robot tactile perception, and bionic prosthetics. In this study, we fabricated millimeter-scale electronic skin featuring compact sensing units using the Boston Micro Fabrication S130 (a high-precision additive manufacturing device) and the template removal method. We used a gallium-based liquid metal and achieved an inner channel diameter of 0.

View Article and Find Full Text PDF

Compartmentalizing Donor-Acceptor Stenhouse Adducts for Structure-Property Relationship Analysis.

J Am Chem Soc

January 2025

Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, United States.

The development of photoswitches that absorb low energy light is of notable interest due to the growing demand for smart materials and therapeutics necessitating benign stimuli. Donor-acceptor Stenhouse adducts (DASAs) are molecular photoswitches that respond to light in the visible to near-infrared spectrum. As a result of their modular assembly, DASAs can be modified at the donor, acceptor, triene, and backbone heteroatom molecular compartments for the tuning of optical and photoswitching properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!