Enhanced Timing Performance of Dual-Ended PET Detectors for Brain Imaging Using Dual-Finishing Crystal Approach.

Sensors (Basel)

Brightonix Imaging Inc., Seoul 04782, Republic of Korea.

Published: October 2024

This study presents a novel approach to enhancing the timing performance of dual-ended positron emission tomography (PET) detectors for brain imaging by employing a dual-finishing crystal method. The proposed method integrates both polished and unpolished surfaces within the scintillation crystal block to optimize time-of-flight (TOF) and depth-of-interaction (DOI) resolutions. A dual-finishing detector was constructed using an 8 × 8 LGSO array with a 2 mm pitch, and its performance was compared against fully polished and unpolished crystal blocks. The results indicate that the dual-finishing method significantly improves the timing resolution while maintaining good energy and DOI resolutions. Specifically, the timing resolution achieved with the dual-finishing block was superior, measuring 192.0 ± 12.8 ps, compared to 206.3 ± 9.4 ps and 234.8 ± 17.9 ps for polished and unpolished blocks, respectively. This improvement in timing is crucial for high-performance PET systems, particularly in brain imaging applications where high sensitivity and spatial resolution are paramount.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511292PMC
http://dx.doi.org/10.3390/s24206520DOI Listing

Publication Analysis

Top Keywords

brain imaging
12
polished unpolished
12
timing performance
8
performance dual-ended
8
pet detectors
8
detectors brain
8
dual-finishing crystal
8
doi resolutions
8
timing resolution
8
dual-finishing
5

Similar Publications

Background: Cerebellar hemorrhage in neonates is increasingly being identified but is still underdiagnosed. While magnetic resonance imaging (MRI) is the optimal imaging modality for cerebellar hemorrhage evaluation, ultrasonography (US) is commonly used for screening. Characterizing the patterns and distribution of cerebellar hemorrhage lesions can help facilitate its detection by aiding to focus on prevailing type of cerebellar hemorrhage.

View Article and Find Full Text PDF

Challenges of Investigating Compartmentalized Brain Energy Metabolism Using Nuclear Magnetic Resonance Spectroscopy in vivo.

Neurochem Res

January 2025

Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.

Brain function requires continuous energy supply. Thus, unraveling brain metabolic regulation is critical not only for our basic understanding of overall brain function, but also for the cellular basis of functional neuroimaging techniques. While it is known that brain energy metabolism is exquisitely compartmentalized between astrocytes and neurons, the metabolic and neuro-energetic basis of brain activity is far from fully understood.

View Article and Find Full Text PDF

Introduction: Residual dizziness (RD) is common in patients with benign paroxysmal positional vertigo (BPPV) after successful canalith repositioning procedures. This study aimed to investigate the therapeutic effects of vestibular rehabilitation (VR) on BPPV patients experiencing RD, and to explore the impact of VR on functional connectivity (FC), specifically focusing on the bilateral parietal operculum (OP) cortex.

Methods: Seventy patients with RD were randomly assigned to either a four-week VR group or a control group that received no treatment.

View Article and Find Full Text PDF

Objectives: Maternal obesity increases a child's risk of neurodevelopmental impairment. However, little is known about the impact of maternal obesity on fetal brain development.

Methods: We prospectively recruited 20 healthy pregnant women across the range of pre-pregnancy or first-trimester body mass index (BMI) and performed fetal brain magnetic resonance imaging (MRI) of their healthy singleton fetuses.

View Article and Find Full Text PDF

Objective: Around 30% of people with schizophrenia are refractory to antipsychotic treatment (treatment-resistant schizophrenia). Abnormal structural neuroimaging findings, in particular volume and thickness reductions, are often described in schizophrenia. Novel biomarkers of active brain pathology such as neurofilament light chain protein are now expected to improve current understanding of psychiatric disorders, including schizophrenia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!