An Affordable Dual Purpose Spray Setup for Lithium-Ion Batteries Thin Film Electrode Deposition.

Materials (Basel)

Department of Electrical and Computer Engineering, School of Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece.

Published: October 2024

AI Article Synopsis

  • A new cost-effective spray setup combines compressed air spray and electrospray techniques specifically for small-scale lab use, aimed at helping researchers grow battery electrodes.
  • The system includes user-friendly control software and detailed cost/materials information, addressing the lack of affordable research tools for these methods.
  • Testing revealed that air-spray samples were more consistent, while electrospray samples provided better material coverage and crystallinity, though both faced challenges like cracking and solvent evaporation, with further upgrades discussed for future research.

Article Abstract

This work presents a versatile and cost-effective spray setup that integrates both compressed air spray and electrospray techniques, specifically designed for small-scale laboratory use. This setup provides researchers with an accessible tool to explore spray methods for growing battery electrodes. While these techniques hold significant industrial promise, affordable and simple methods for their use in research settings have been limited. To address this, the setup includes custom control software and detailed information on costs and materials, offering an easy-to-implement solution. The system was tested with three samples per technique, using identical settings, to evaluate the repeatability of each method and gain insights into the uniformity and structure of the resulting films. The structural and morphological characteristics of the samples were analyzed using X-ray diffraction and scanning electron microscopy. The air-spray samples showed greater consistency and repeatability, whereas the electrospray samples exhibited better deposition results in terms of material coverage and higher crystallinity films. Cracking was observed in the air-spray samples, which was related to thermal stress, and both techniques exhibited solvent evaporation issues. The issues encountered with the setup and samples are summarized, along with possible solutions and the next steps for future upgrades and research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509203PMC
http://dx.doi.org/10.3390/ma17205114DOI Listing

Publication Analysis

Top Keywords

spray setup
8
air-spray samples
8
samples
6
setup
5
affordable dual
4
dual purpose
4
spray
4
purpose spray
4
setup lithium-ion
4
lithium-ion batteries
4

Similar Publications

The application of antimicrobial surfaces requires proof of their effectivity by methods in laboratories. One of the most common test methods is ISO 22196:2011, which represents a simple and inexpensive protocol by applying the bacterial suspension with known volume and concentration covered under a polyethylene film on the surfaces. The incubation is then conducted under defined humidity conditions for 24 h.

View Article and Find Full Text PDF

Melatonin is considered an effective bio-stimulant that is crucial in managing several abiotic stresses including drought. However, its potential mechanisms against drought stress in fragrant roses are not well understood. Here, we aim to investigate the role of melatonin on plants cultivated under drought stress (40 % field capacity) and normal irrigation (80 % field capacity).

View Article and Find Full Text PDF

Scale-up of Microdroplet Reactors for Efficient CO Resource Utilization.

J Am Chem Soc

January 2025

MOE Key Laboratory of Mesoscopic Chemistry, Nanjing University, Nanjing, Jiangsu 210023, China.

Two-phase reactions involving microdroplets have gained significant attention in recent years due to their unique ability to catalyze and accelerate reactions that typically do not occur under standard conditions by leveraging chemical and physical effects at the micrometer-scale interface. In this work we have innovatively developed a scaled-up microdroplet reactor for the efficient resource utilization of CO. The reaction liquid is sprayed in the form of mist ( < 20 μm), facilitating complete contact and reaction with gaseous CO.

View Article and Find Full Text PDF

Optimizing whole grain rice fortification using microwave-assisted screw conveying spraying and drying setup: Exploring solution absorption, gelatinization, and micronutrient retention.

Food Chem

March 2025

Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India. Electronic address:

This study presents a novel gelatinization-induced whole-grain rice fortification (GIWGRF) technology using a microwave-assisted screw conveying spraying and drying setup (MASCSD). The process involves microwave-assisted soaking of pregelatinized rice in a micronutrient solution, followed by steam-assisted gelatinization and drying. Rice with an initial degree of gelatinization (DG) of 58.

View Article and Find Full Text PDF

Functionally graded materials are a class of composite materials that finds widespread use in aerospace, defense and automobile applications due to their tailored material properties for the specific need. In the present research, impact dynamics and the damage behavior of functionally graded plasma spray coating (FGPS) on an aluminium 6061-T6 substrate under high velocity impact at various temperatures were studied. The FGPS coating consists of four layers having various proportions of Al and SiC (50/50, 40/60, 30/70 and 20/80 weight percentages) and the coating thickness was measured to be 232.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!