Currently, recycling of spent lithium-ion batteries is carried out using mechanical, pyrometallurgical and hydrometallurgical methods and their combination. The aim of this article is to study a part of the pyro-hydrometallurgical processing of spent lithium-ion batteries which includes lithium slag hydrometallurgical treatment and refining of the obtained leachate. Leaching was realized via dry digestion, which is an effective method capable of transferring over 99% of the present metals, such as Li, Al, Co, Cu, and others, to the leachate. In this work, the influence of three types of precipitation agents (NaOH, NHOH, NaPO) on the precipitation efficiency of Al and Li losses was investigated. It was found that the precipitation of aluminum with NaOH can result in the co-precipitation of lithium, causing total lithium losses up to 40%. As a suitable precipitating agent for complete Al removal from Li leachate with a minimal loss of lithium (less than 2%), crystalline NaPO was determined under the following conditions: pH = 3, 400 rpm, 10 min, room temperature. Analysis confirmed that, in addition to aluminum, the precipitate also contains the REEs La (3.4%), Ce (2.5%), Y (1.3%), Nd (1%), and Pr (0.3%). The selective recovery of these elements will be the subject of further study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509753PMC
http://dx.doi.org/10.3390/ma17205113DOI Listing

Publication Analysis

Top Keywords

lithium losses
8
spent lithium-ion
8
lithium-ion batteries
8
lithium
6
selective precipitation
4
precipitation ree-rich
4
ree-rich aluminum
4
aluminum phosphate
4
phosphate low
4
low lithium
4

Similar Publications

We propose and demonstrate integrated photonic crystal (PhC) beam splitters based on X-cut thin film lithium niobate (TFLN). Its working principle is based on bandgap guidance and total reflection in the PhC slab. We designed two structures: one features a triangular lattice, while the other exhibits a tetragonal lattice.

View Article and Find Full Text PDF

Recently, the widespread utilization of combustible materials has increased the risks associated with building fires. Early fire-warning systems represent a pivotal strategy in mitigating losses incurred from fire incidents and offer considerable potential for the enhancement of fire safety management. This study focuses on the synthesis of bio-based ionic hydrogels, specifically calcium alginate/polyacrylamide/glycerol/lithium bromide (CPG-L), as a novel fire sensor.

View Article and Find Full Text PDF

Solid-state batteries currently receive ample attention due to their potential to outperform lithium-ion batteries in terms of energy density when featuring next-generation anodes such as lithium metal or silicon. One key remaining challenge is identifying solid electrolytes that combine high ionic conductivity with stability in contact with the highly reducing potentials of next-generation anodes. Fully reduced electrolytes, based on irreducible anions, offer a promising solution by avoiding electrolyte decomposition altogether.

View Article and Find Full Text PDF

Increasing the upper cut-off voltage (UCV) enhances the specific energy of Li-ion batteries (LIBs), but is accompanied by higher capacity fade as a result of electrode cross-talk, i.e., transition metals (TM) dissolution from cathode and deposition on anode, finally triggering high surface area lithium (HSAL) formation due to locally enhanced resistance.

View Article and Find Full Text PDF

This study focuses on optimizing resource recovery technology in the dismantling process of retired lithium batteries to mitigate environmental pollution. Addressing the challenge of significant precious metal losses in traditional hydrometallurgical recycling methods, this study employs a reductive roasting-carbonation leaching process to selectively extract lithium from cathode materials using a reducing agent. The study examines the effects of parameters such as roasting temperature, time, and reducing agent dosage on lithium leaching efficiency, and explores additional factors including carbonation leaching time, carbon dioxide flow rate, liquid-to-solid ratio, and leaching temperature in conjunction with multi-stage countercurrent leaching technology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!