Ceramic capacitors have received great attention for use in pulse power systems owing to their ultra-fast charge-discharge rate, good temperature stability, and excellent fatigue resistance. However, the low energy storage density and low breakdown strength (BDS) of ceramic capacitors limit the practical applications of energy storage technologies. In this work, we present a series of relaxor ferroelectric ceramics (1-) [0.94 BiNaTiO -0.06BaTiO]- SrBiTiO (1- BNT-BT- SBT; = 0, 0.20, 0.225, 0.25, 0.275 and 0.30) with improved energy storage performances by combining relaxor and antiferroelectric properties. XRD, Raman spectra, and SEM characterizations of BNT-BT-SBT ceramics revealed a rhombohedral-tetragonal phase, highly dynamic polar nanoregions, and a reduction in grain size with a homogeneous and dense microstructure, respectively. A high dielectric constant of 1654 at 1 kHz and low remnant polarization of 1.39 µC/cm were obtained with the addition of SBT for = 0.275; these are beneficial for improving energy storage performance. The diffuse phase transition of these ceramics displays relaxor behavior, which is improved with SBT and confirmed by modified the Curie-Weiss law. The combining relaxor and antiferroelectric properties with fine grain size by the incorporation of SBT enables an enhanced maximum polarization of a minimized loop, leading to an improved BDS. As a result, a high recoverable energy density of 1.02 J/cm and a high energy efficiency of 75.98% at 89 kV/cm were achieved for an optimum composition of 0.725 [0.94BNT-0.06BT]-0.275 SBT. These results demonstrate that BNT-based relaxor ferroelectric ceramics are good candidates for next-generation ceramic capacitors and offer a potential strategy for exploiting novel high-performance ceramic materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509821PMC
http://dx.doi.org/10.3390/ma17205044DOI Listing

Publication Analysis

Top Keywords

energy storage
20
combining relaxor
12
relaxor antiferroelectric
12
antiferroelectric properties
12
ceramic capacitors
12
improving energy
8
storage performance
8
relaxor ferroelectric
8
ferroelectric ceramics
8
grain size
8

Similar Publications

As an effective method to enhance the dielectric performance of polyolefin materials, polar side group modification has been extensively applied in the insulation and energy storage materials of electrical and electronic systems. In this work, two side groups with different topological structures were adopted, namely, vinyl acetate (VAc, aliphatic chain) and -vinyl-pyrrolidone (NVP, saturated ring), to modify polypropylene (PP) chemical grafting, and the effects of structural topology of the polar side group on the microscopic and macroscopic characteristics of PP, particularly on its electrical anti-breakdown ability, were investigated. Experimental results showed that the side group structural topology directly affected the crystallization and thermal properties of PP.

View Article and Find Full Text PDF

Red-Shifted and Enhanced Photoluminescence Emissions from Hydrogen-Bonded Multicomponent Nontraditional Luminogens.

Langmuir

January 2025

Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China.

Nontraditional luminogens (NTLs) without large π-conjugated aromatic structures have attracted a great deal of attention in recent years. Developing NTLs with red-shifted and enhanced emissions remains a great challenge. In this work, we developed a NTL composed of three components, i.

View Article and Find Full Text PDF

Plateau-dominated hard carbon with a high rate of performance is challenging to obtain, and the in-depth mechanism of pore structure on the diffusion of sodium ions remains unclear. In this study, a facile liquid-phase molecular reconstruction strategy is proposed to regulate the orientation of the β-cyclodextrin molecules and prepare spherical hard carbon with continuous and ordered pore channels. Through detailed characterization, this approach is confirmed to optimize the accumulation of Na in the dispersion region, thus improving the plateau kinetics and enhancing the utilization of closed pores.

View Article and Find Full Text PDF

Li-ion capacitors (LICs) integrate the desirable features of lithium-ion batteries (LIBs) and supercapacitors (SCs), but the kinetic imbalance between the both electrodes leads to inferior electrochemical performance. Thus, constructing an advanced anode with outstanding rate capability and terrific redox kinetics is crucial to LICs. Herein, heterostructured ZnS/SnS2 nanosheets encapsulated into N-doped carbon microcubes (ZnS/SnS2@NC) are successfully fabricated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!