Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_session1l5rrcjdfmgebkdc4cks1bmrj434707i): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Undefined array key "choices"
Filename: controllers/Detail.php
Line Number: 249
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 249
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Trying to access array offset on value of type null
Filename: controllers/Detail.php
Line Number: 249
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 249
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Trying to access array offset on value of type null
Filename: controllers/Detail.php
Line Number: 249
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 249
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Trying to access array offset on value of type null
Filename: controllers/Detail.php
Line Number: 249
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 249
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: 8192
Message: strpos(): Passing null to parameter #1 ($haystack) of type string is deprecated
Filename: models/Detail_model.php
Line Number: 71
Backtrace:
File: /var/www/html/application/models/Detail_model.php
Line: 71
Function: strpos
File: /var/www/html/application/controllers/Detail.php
Line: 252
Function: insertAPISummary
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: 8192
Message: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated
Filename: helpers/my_audit_helper.php
Line Number: 8919
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 8919
Function: str_replace
File: /var/www/html/application/controllers/Detail.php
Line: 255
Function: formatAIDetailSummary
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Undefined array key "choices"
Filename: controllers/Detail.php
Line Number: 256
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 256
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Trying to access array offset on value of type null
Filename: controllers/Detail.php
Line Number: 256
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 256
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Trying to access array offset on value of type null
Filename: controllers/Detail.php
Line Number: 256
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 256
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Undefined array key "usage"
Filename: controllers/Detail.php
Line Number: 257
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 257
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Trying to access array offset on value of type null
Filename: controllers/Detail.php
Line Number: 257
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 257
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Undefined array key "usage"
Filename: controllers/Detail.php
Line Number: 258
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 258
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Trying to access array offset on value of type null
Filename: controllers/Detail.php
Line Number: 258
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 258
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Undefined array key "usage"
Filename: controllers/Detail.php
Line Number: 259
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 259
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Trying to access array offset on value of type null
Filename: controllers/Detail.php
Line Number: 259
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 259
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Undefined array key "usage"
Filename: controllers/Detail.php
Line Number: 260
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 260
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Trying to access array offset on value of type null
Filename: controllers/Detail.php
Line Number: 260
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 260
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Trying to access array offset on value of type null
Filename: controllers/Detail.php
Line Number: 260
Backtrace:
File: /var/www/html/application/controllers/Detail.php
Line: 260
Function: _error_handler
File: /var/www/html/index.php
Line: 316
Function: require_once
We demonstrate the application of free-to-use and easy-to-implement Bayesian optimization (BO) software to streamline atomic layer deposition (ALD) process optimization. By employing machine learning-based Bayesian optimization algorithms, we enhanced the silicon surface passivation quality of titanium dioxide layers deposited using titanium tetraisopropoxide (TTIP). Unlike classical designs of experimental methods, such as Box-Behnken or Plackett-Burman designs, which require a predefined set of experiments and can become resource intensive, BO offers several advantages. It dynamically updates the search strategy based on previous outcomes, allowing for efficient exploration of parameter spaces with fewer experimental runs. This adaptive approach is particularly advantageous in small-scale experiments or laboratories where time, resources, and materials are limited. In a single-objective optimization experiment, we identified constrained search spaces that limited further optimization, underscoring the importance of properly defined parameter bounds prior to the optimization process. Our findings highlight that Bayesian optimization can not only reduce time and resource costs associated with ALD process optimization but also support faster discovery of more optimal ALD process parameters, even with minimal prior knowledge of the deposition process or precursor chemistry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509461 | PMC |
http://dx.doi.org/10.3390/ma17205019 | DOI Listing |
Soft Robot
December 2024
Department of Mechanical Engineering, Institute of Advanced Machines and Design, Institute of Engineering Research, Seoul National University, Seoul, Republic of Korea.
Soft sensors integrated or attached to robots or human bodies enable rapid and accurate estimation of the physical states of the target systems, including position, orientation, and force. While the use of a number of sensors enhances precision and reliability in estimation, it may constrain the movement of the target system or make the entire system complex and bulky. This article proposes a rapid, efficient framework for determining where to place the sensors on the system given the limited number of available sensors.
View Article and Find Full Text PDFAdv Radiat Oncol
February 2025
Departments of Radiation Physics.
Purpose: To evaluate the efficacy of prominent machine learning algorithms in predicting normal tissue complication probability using clinical data obtained from 2 distinct disease sites and to create a software tool that facilitates the automatic determination of the optimal algorithm to model any given labeled data set.
Methods And Materials: We obtained 3 sets of radiation toxicity data (478 patients) from our clinic: gastrointestinal toxicity, radiation pneumonitis, and radiation esophagitis. These data comprised clinicopathological and dosimetric information for patients diagnosed with non-small cell lung cancer and anal squamous cell carcinoma.
Radiother Oncol
December 2024
INSERM UMR 1138, Team 22, Information Science to Support Personalized Medicine, Centre de Recherche des Cordeliers, Université de Paris, 15 rue de l'école de médecine 75006 Paris, France; Radiation Oncology, Hôpital Européen Georges Pompidou, 20 rue Leblanc 75015 Paris, France.
Introduction: Patients with a head and neck (HN) cancer undergoing radiotherapy risk critical weight loss and oral intake reduction leading to enteral nutrition. We developed a predictive model for the need for enteral nutrition during radiotherapy in this setting. Its performances were reported on a real-world multicentric cohort.
View Article and Find Full Text PDFPurpose: Novel therapies targeting specific genomic alterations are a promising treatment approach for relapsed/refractory cancer. Patients with specific alterations may be more likely to respond. Trial designs should maximize opportunities for such patients to enroll on these trials.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Colorectal Surgery, The Affiliated Xuzhou Clinical College of Xuzhou Medical University, Xuzhou Central Hospital, Xuzhou, Jiangsu, China.
Background: The optimal second-line systemic treatment for metastatic colorectal cancer (mCRC) is inconclusive.
Methods: We searched PubMed, Web of Science, EMBASE, and Cochrane Library for RCTs comparing second-line systemic treatments for mCRC from the inception of each database up to February 3, 2024. Markov Chain Monte Carlo (MCMC) technique was used in this network meta-analysis (NMA) to generate the direct and indirect comparison results among multiple treatments in progression-free survival (PFS), overall response rate (ORR), overall survival (OS), complete response (CR), partial response (PR), grade 3 and above adverse events (Grade ≥ 3AE), and any adverse events (Any AE).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!