AI Article Synopsis

  • The study highlights the growing need for sustainable alternatives to petroleum-based materials in the adhesives industry, with a focus on geraniol as a renewable component in waterborne pressure-sensitive adhesives (PSAs).
  • Various formulations using geraniol were created and subjected to extensive chemical analysis using advanced techniques like FTIR and TGA to assess their properties.
  • The results demonstrated that geraniol-based PSAs exhibit desirable thermal and adhesive characteristics, showing potential as an eco-friendly substitute in adhesive applications.

Article Abstract

The escalating global emphasis on sustainability, coupled with stringent regulatory frameworks, has spurred the quest for environmentally viable alternatives to petroleum-derived materials. Within this context, the adhesives industry has been actively seeking renewable options and eco-friendly synthesis pathways. This study introduces geraniol, a monoterpenoid alcohol, in its unmodified form, as a key component in the production of waterborne pressure-sensitive adhesives (PSAs) based on acrylic latex through emulsion polymerization. Multiple formulations were developed at varying reaction times. The adhesives underwent comprehensive chemical characterization employing techniques such as Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Nuclear Magnetic Resonance (NMR), Gel Permeation Chromatography (GPC), and dynamic light scattering (DLS). The viscosities of the formulations were measured between 4000 and 5000 cP. Adhesion tests showed peel strength values of 0.52 N/mm on cardboard and 0.32 N/mm on painted steel for the geraniol-based formulations. The results demonstrate the potential for geraniol-based PSAs to offer a sustainable alternative to petroleum-derived adhesives, with promising thermal and adhesive properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509658PMC
http://dx.doi.org/10.3390/ma17204957DOI Listing

Publication Analysis

Top Keywords

pressure-sensitive adhesives
8
adhesives
5
advancing sustainability
4
sustainability geraniol-enhanced
4
geraniol-enhanced waterborne
4
waterborne acrylic
4
acrylic pressure-sensitive
4
adhesives chemical
4
chemical modification
4
modification escalating
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!