A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

MicroED: Unveiling the Structural Chemistry of Plant Biomineralisation. | LitMetric

Plants are able to produce various types of crystals through metabolic processes, serving functions ranging from herbivore deterrence to photosynthetic efficiency. However, the structural analysis of these crystals has remained challenging due to their small and often imperfect nature, which renders traditional X-ray diffraction techniques unsuitable. This study explores the use of Microcrystal Electron Diffraction (microED) as a novel method for the structural analysis of plant-derived microcrystals, focusing on (Milld.), a halophytic plant known for its biomineralisation capabilities. In this study, plants were cultivated under controlled laboratory conditions with exposure to cadmium and thallium to induce the formation of crystalline deposits on their leaf surfaces. These deposits were analysed using microED, revealing the presence of sodium chloride (halite), sodium sulphate (thénardite), and calcium sulphate dihydrate (gypsum). Our findings highlight the potential of microED as a versatile tool in plant science, capable of providing detailed structural insights into biomineralisation processes, even from minimal and imperfect crystalline samples. The application of microED in this context not only advances the present understanding of 's adaptation to saline environments but also opens new avenues for exploring the structural chemistry of biomineralisation in other plant species. Our study advocates for the broader adoption of microED in botanical research, especially when dealing with challenging crystallographic problems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510860PMC
http://dx.doi.org/10.3390/molecules29204916DOI Listing

Publication Analysis

Top Keywords

structural chemistry
8
plant biomineralisation
8
structural analysis
8
microed
6
structural
5
microed unveiling
4
unveiling structural
4
plant
4
chemistry plant
4
biomineralisation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!