The current study investigates the influence of several R substituents (e.g., Me, SiH, F, Cl, Br, OH, NH, etc.) on the aromaticity of borazine, also known as the "inorganic benzene". By performing hybrid DFT methods, blended with several computational techniques, e.g., Natural Bond Orbital (NBO), Quantum Theory of Atoms in Molecules (QTAIM), Gauge-Including Magnetically Induced Current (GIMIC), Nucleus-Independent Chemical Shift (NICS), and following a simultaneous evaluation of four different aromaticity indices (para-delocalization index (PDI), multi-centre bond order (MCBO), ring current strength (RCS), and NICS parameters), it is emphasized that the aromatic character of B-substituted (BRNH) and N-substituted (BHNR) borazine derivatives can be tailored by modulating the electronic effects of R groups. It is also highlighted that the position of R substituents on the ring structure is crucial in tuning the aromaticity. Systematic comparisons of calculated aromaticity index values (i.e., via regression analyses and correlation matrices) ensure that the reported trends in aromaticity variation are accurately described, while the influence of different R groups on electron delocalization and related aromaticity phenomena is quantitatively assessed based on NBO analyses. The most relevant interactions impacting the aromatic character of investigated systems are (i) the electron conjugations occurring between the p lone pair electrons (LP) on the F, Cl, Br, O or N atoms, of R groups, and the π*(B=N) orbitals on the borazine ring (i.e., LP(R)→π*(B=N) donations), and (ii) the steric-exchange (Pauli) interactions between the same LP and the π(B=N) bonds (i.e., LP(R)↔π(B=N) repulsions), while inductive/field effects influence the aromaticity of the investigated trisubstituted borazine systems to a much lesser extent. This work highlights that although the aromatic character of borazine can be enhanced by grafting electron-donor substituents (F, OH, NH, O, NH) on the N atoms, the stabilization due to aromaticity has only a moderate impact on these systems. By replacing the H substituents on the B atoms with similar R groups, the aromatic character of borazine is decreased due to strong exocyclic LP(R)→π*(B=N) donations affecting the delocalization of π-electrons on the borazine ring.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510063 | PMC |
http://dx.doi.org/10.3390/molecules29204902 | DOI Listing |
Commun Chem
December 2024
Anorganische Chemie, Universität Göttingen, Göttingen, Germany.
The search for stable compounds containing an antiaromatic cyclic 4π system is a challenge for inventive chemists that can look back on a long history. Here we report the isolation and characterization of the novel 4π-electron tetrasilacyclobutadiene, an analogue of a 4π neutral cyclobutadiene that exhibits surprising features of a Möbius-type aromatic ring. Reduction of RSiCl (R = (Pr)PCH) with KC in the presence of cycloalkyl amino-carbene (cAAC) led to the formation of corresponding silylene 1.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.
The exploration of main group compounds with multiple bonds has significantly enhanced our understanding of chemical bonding and expanded transition-metal-free bond activation and catalysis. Diborynes, characterized by a boron-boron triple bond (B≡B), represent a particularly challenging area due to boron's limited valence electrons. Here, we report the synthesis and characterization of a silylene-stabilized diboryne (), expanding the frontier of diboryne stabilization.
View Article and Find Full Text PDFJ Phys Chem A
December 2024
Astrophysics Branch, NASA Ames Research Center, MS 245-6, Moffett Field, California 94035, United States.
Anharmonic computations reveal an intense, narrow (20 cm, 0.043 μm) absorption feature at approximately 2160 cm (4.63 μm) in the vibrational spectra of 14 prototypical singly isocyano-substituted polycyclic aromatic hydrocarbons (NC-PAHs) attributed to the NC stretching mode.
View Article and Find Full Text PDFScience
December 2024
Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, USA.
Modern medicinal chemists are targeting more complex molecules to address challenging biological targets, which leads to synthesizing structures with higher sp character (Fsp) to enhance specificity as well as physiochemical properties. Although traditional flat, high-fraction sp molecules, such as pyridine, can be decorated through electrophilic aromatic substitution and palladium (Pd)-based cross-couplings, general strategies to derivatize three-dimensional (3D) saturated molecules are far less developed. In this work, we present an approach for the rapid, modular, enantiospecific, and diastereoselective functionalization of piperidine (saturated analog of pyridine), combining robust biocatalytic carbon-hydrogen oxidation with radical cross-coupling.
View Article and Find Full Text PDFJ Chem Inf Model
December 2024
Medicinal Chemistry Laboratory II, Gedeon Richter Plc., Gyömrői út 19-21, Budapest 1103, Hungary.
The significant importance of GABA receptors in the treatment of central nervous system (CNS) disorders has been known for a long time. However, only in recent years have experimental protein structures been published that can open the door to understanding protein-ligand interactions and may effectively help the rational drug design for the future. In our previous work (Szabó, G.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!