Sub-10 nm PdNi@PtNi Core-Shell Nanoalloys for Efficient Ethanol Electro-Oxidation.

Molecules

College of Chemistry & Chemical and Environmental Engineering, Weifang University, Weifang 261061, China.

Published: October 2024

AI Article Synopsis

  • Controlling the structure and composition of Pt-based nanoalloys can enhance their performance for ethanol oxidation reactions (EORs).
  • Researchers synthesized sub-10 nm PdNi@PtNi nanoparticles with a core-shell design using a one-pot method, leading to improved catalytic properties.
  • The new PdNi@PtNi catalysts demonstrate significantly increased mass and specific activity compared to traditional Pt/C catalysts, alongside better stability, showcasing a promising strategy for enhancing Pt-based electrocatalysts.

Article Abstract

By controlling the structure and composition of Pt-based nanoalloys, the ethanol oxidation reaction (EOR) performances of Pt alloy catalysts can be effectively improved. Herein, we successfully synthesis sub-10 nm PdNi@PtNi nanoparticles (PdNi@PtNi NPs) with a core-shell structure by a one-pot method. The sub 10 nm core-shell nanoparticles possess more effective atoms and exhibit a synergistic effect which can lead to a shift in the d-band center and alter binding energies toward adsorbates. Due to the synergistic effect and unique core-shell structure, the PdNi@PtNi NP catalysts exhibit excellent electrocatalytic performance for ethanol oxidation reactions in alkaline, achieving 9.30 times more mass activity and 7.05 times more specific activity that of the state-of-the-art Pt/C catalysts. Moreover, the stability of PdNi@PtNi NPs was also greatly improved over PtNi nanoparticles, PtPd nanoparticles, and commercial Pt/C. This strategy provides a new idea for improving the electrocatalytic performance of Pt-based catalysts for EORs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510317PMC
http://dx.doi.org/10.3390/molecules29204853DOI Listing

Publication Analysis

Top Keywords

sub-10 pdni@ptni
8
ethanol oxidation
8
pdni@ptni nps
8
core-shell structure
8
electrocatalytic performance
8
core-shell
4
pdni@ptni core-shell
4
core-shell nanoalloys
4
nanoalloys efficient
4
efficient ethanol
4

Similar Publications

Exposure to ambient particulate matter (PM) with an aerodynamic diameter of <10 μm (PM) is a well-established health hazard. There is increasing evidence that geogenic (Earth-derived) particles can induce adverse biological effects upon inhalation, though there is high variability in particle bioreactivity that is associated with particle source and physicochemical properties. In this study, we investigated physicochemical properties and biological reactivity of volcanic ash from the April 2021 eruption of La Soufrière volcano, St.

View Article and Find Full Text PDF

Real-World Particle Emissions from a Modern Heavy-Duty Diesel Vehicle during Normal Operation and DPF Regeneration Events: Impacts on Disadvantaged Communities.

Environ Sci Technol

January 2025

Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California, 1084 Columbia Avenue, Riverside, California 92507, United States.

We assessed the real-world particulate emissions of a goods movement diesel vehicle, with an emphasis on total particle number and solid particle number emissions at different cutoff sizes. The vehicle was tested on routes in the South Coast Air Basin (SCAB) of California, representative of typical goods movement operation between the ports to warehouses and logistic centers with a mixture of urban and highway driving, as well as elevation change. We evaluated emissions during normal vehicle operation and diesel particulate filter (DPF) active regeneration events.

View Article and Find Full Text PDF

The controllable synthesis of epitaxial nanopillar arrays is fundamentally important to the development of advanced electrical and optical devices. However, this fascinating growth method has rarely been applied to the bottom-up synthesis of plasmonic nanostructure arrays (PNAs) with many broad, important, and promising applications in optical sensing, nonlinear optics, surface-enhanced spectroscopies, photothermal conversion, photochemistry, etc. Here, a one-step epitaxial approach to single-crystalline NbTiN (NbTiN) nanopillar arrays based on the layer plus island growth mode is demonstrated by strain engineering.

View Article and Find Full Text PDF

Mid-infrared photodetection with 2D metal halide perovskites at ambient temperature.

Sci Adv

December 2024

Department of Chemical and Environmental Engineering, Yale University, 9 Hillhouse Avenue, New Haven, CT 06520, USA.

Article Synopsis
  • Detection of mid-infrared (MIR) light is vital for various technologies like night vision and thermal imaging, yet traditional methods often require complex setups or cooling.
  • This study introduces a novel approach using two-dimensional metal halide perovskites (2D-MHPs) that enables high-sensitivity detection of MIR light at room temperature, with capabilities down to 1 nanowatt per square micrometer.
  • The technology achieves further sensitivity improvements using unique membrane structures and photonic strategies, covering a range of infrared wavelengths from 2 to 10.6 micrometers, paving the way for advancements in areas like environmental monitoring and molecular sensing.
View Article and Find Full Text PDF

Neuromorphic photonic processors are redefining the boundaries of classical computing by enabling high-speed multidimensional information processing within the memory. Memristors, the backbone of neuromorphic processors, retain their state after programming without static power consumption. Among them, electro-optic memristors are of great interest, as they enable dual electrical-optical functionality that bridges the efficiency of electronics and the bandwidth of photonics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!