Far infrared radiation (FIR) within the wavelength range of 4-14 μm can offer human health benefits, such as improving blood flow. Therefore, additives that emit far infrared radiation have the potential to be incorporated into polymer/fabric matrices to develop textiles that could promote health. In this study, biochar derived from candlenuts and pyrolyzed with activated carbon (AC) was incorporated into polypropylene (PP) films and investigated for its potential as a health-promoting textile additive. The properties of biochar were compared with other far infrared (FIR) emitting additives such as hematite, Indian red ochre, and graphene. The addition of biochar increased FIR emissivity to 0.90, which is 9% higher than that of pristine PP. Additionally, biochar enhanced UV and near-infrared (NIR) blocking capabilities, achieving an ultra-protection factor (UPF) of 91.41 and NIR shielding of 95.85%. Incorporating 2 wt% biochar resulted in a 3.3-fold higher temperature increase compared to pristine PP after 30 s of exposure to an FIR source, demonstrating improved heat retention. Furthermore, the ability to achieve the lowest thermal effusivity among other additives supports the potential use of biochar-incorporated fabric as a warming material in cold climates. The tensile properties of PP films with biochar were superior to those with other additives, potentially contributing to a longer product lifespan. Additionally, samples with red ochre exhibited the highest FIR emissivity, while samples with hematite showed the highest capacity for UV shielding.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509977 | PMC |
http://dx.doi.org/10.3390/molecules29204798 | DOI Listing |
Angew Chem Int Ed Engl
December 2024
University of Science and Technology of China, Hefei National Research Center for Physical Sciences at Microscale, jinzhai road, hefei, CHINA.
Herein, we first report a photocatalytic OCM using CO2 as a soft oxidant for C2H6 production under mild conditions, where an efficient photocatalyst with unique interface sites is constructed to facilitate CO2 adsorption and activation, while concurrently boosting CH4 dissociation. As a prototype, the Au quantum dots anchored on oxygen-deficient TiO2 nanosheets are fabricated, where the Au-Vo-Ti interface sites for CO2 adsorption and activation are collectively disclosed by in situ Kelvin probe force microscopy, quasi in situ X-ray photoelectron spectroscopy and theoretical calculations. Compared with single metal site, the Au-Vo-Ti interface sites exhibit the lower CO2 adsorption energy and decrease the energy barrier of the *CO2 hydrogenation step from 1.
View Article and Find Full Text PDFJ Biomed Phys Eng
December 2024
Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
Background: Photothermal therapy (PTT) is one of the effective and non-invasive strategies which hold great promise for improving the treatment of cancer cells. PTT is based on activating a photosensitizer by infrared light irradiation and producing heat and reactive species and apoptosis in the tumor area.
Objective: The aim of this study was to investigate the effect of photothermal/chemotherapy on melanoma cancer cells using poly (2-amino phenol)/gold (P2AO/AuNPs) and doxorubicin (DOX).
Adv Mater
December 2024
Program in Materials Science and Engineering, University of California, San Diego, La Jolla, CA, 92093, USA.
The realization of low thermal conductivity at high temperatures (0.11 W m K 800 °C) in ambient air in a porous solid thermal insulation material, using stable packed nanoparticles of high-entropy spinel oxide with 8 cations (HESO-8 NPs) with a relatively high packing density of ≈50%, is reported. The high-density HESO-8 NP pellets possess around 1000-fold lower thermal diffusivity than that of air, resulting in much slower heat propagation when subjected to a transient heat flux.
View Article and Find Full Text PDFJ Phys Chem A
December 2024
Department of Chemistry, Lomonosov Moscow State University, Moscow 119991 Russia.
The recent detection of benzonitrile (CHCN) in the interstellar medium is one of the most fascinating discoveries in astrochemistry and molecular astrophysics. However, the mechanism of its formation in interstellar ices remains unclear. Here, we report the first evidence for the direct synthesis of benzonitrile through the radiation-induced transformations of an isolated CH···HCN complex in inert rigid media at cryogenic temperature (4.
View Article and Find Full Text PDFJ Biophotonics
December 2024
Novosibirsk State University, Novosibirsk, Russia.
Local therapeutic action and targeted drug release are promising approaches compared to traditional systemic drug administration. This is especially relevant for nitric oxide (NO), as its effects change dramatically depending on concentration and cellular context. Materials capable of releasing NO in deep tissues in a controlled manner might open new therapeutic opportunities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!