Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hard-brittle materials are widely used in the optics, electronics, and aviation industries, but their high hardness and brittleness make it challenging for traditional processing methods to achieve high efficiency and superior surface quality. This study aims to investigate the application of ultrasonic local resonant grinding to sapphire to improve the efficiency and meet the requirements for the optical window in the surface roughness of the material. The resonant frequency of a piezoelectric ultrasonic vibration system and the vibration amplitude of a grinding head's working face were simulated and tested, respectively. The results of ultrasonic grinding experiments showed that the local resonant system reduced the surface roughness parameter (Ra) of sapphire to 14 nm and improved its surface flatness to 44.2 nm, thus meeting the requirements for the ultra-precision grinding of sapphire. Compared with a conventional resonant system, the surface roughness of the sapphire ground with the local resonant system was reduced by 90.79%, its surface flatness was improved by 81.58%, and the material removal rate was increased by 31.35%. These experimental results showed that ultrasonic local resonant grinding has better effects than those of conventional ultrasonic grinding in improving surface quality and increasing the material removal rate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509595 | PMC |
http://dx.doi.org/10.3390/mi15101216 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!