Properties Investigation and Damage Analysis of GaN Photoconductive Semiconductor Switch Based on SiC Substrate.

Micromachines (Basel)

Laboratory of Solid State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China.

Published: September 2024

The GaN photoconductive semiconductor switches (PCSSs) with low leakage current and large on-state current are suitable for several applications, including fast switching and high-power electromagnetic pulse equipment. This paper demonstrates a high-power GaN lateral PCSS device. An output peak current of 142.2 A is reached with an input voltage of 10.28 kV when the GaN lateral PCSS is intrinsically triggered. In addition, the method of retaining the AlGaN/GaN heterostructure between electrodes on PCSSs is proposed, which results in increasing the output peak current of the PCSS. The damage mechanism of the PCSS caused by a high electric field and high excitation laser energy is analyzed. The obtained results show that the high heat generated by the large current leads to the decomposition of GaN, and thus, the Ga forms a metal conductive path, resulting in the failure of the device.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509565PMC
http://dx.doi.org/10.3390/mi15101178DOI Listing

Publication Analysis

Top Keywords

gan photoconductive
8
photoconductive semiconductor
8
gan lateral
8
lateral pcss
8
output peak
8
peak current
8
gan
5
current
5
properties investigation
4
investigation damage
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!