Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background/objectives: Ultraviolet (UV) radiation is a primary factor in skin photoaging, leading to wrinkles, reduced elasticity, and pigmentation changes due to damage to cellular DNA, proteins, and lipids. Glycoproteins from sesame cake (SPE) have potential protective effects against UV-induced skin aging. This study investigated the anti-photoaging effects of SPE on UV-induced damage in human keratinocyte HaCaT cells and SKH-1 hairless mice.
Methods: SPE was evaluated for its ability to mitigate UV-induced damage in HaCaT cells by assessing MMP-1 protein and mRNA expression levels, as well as the activity of transcription factors AP-1 and NF-κB. The phosphorylation of AKT and MAPK pathways was also analyzed. In vivo, SKH-1 hairless mice were exposed to UV radiation, and the effects of SPE on wrinkle formation and skin structure were assessed by measuring wrinkle length, area, and volume.
Results: SPE significantly inhibited UV-induced MMP-1 protein and mRNA expression in HaCaT cells, indicating suppression of AP-1 and NF-κB transcription factors involved in MMP-1 production. Additionally, SPE reduced UV-induced phosphorylation of AKT and MAPK pathways. In SKH-1 hairless mice, SPE treatment led to significant reductions in wrinkle length, area, and volume, preserving skin structure in UV-exposed mice.
Conclusions: The findings demonstrate that SPE has protective effects against UV-induced photoaging by inhibiting key molecular pathways associated with skin aging. SPE shows promise as a natural anti-photoaging agent, providing a foundation for future skincare product development. Further studies are warranted to explore the molecular mechanisms in detail and to validate these effects through clinical trials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510566 | PMC |
http://dx.doi.org/10.3390/ph17101306 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!