Exploring the Possibilities of Using Recovered Collagen for Contaminants Removal-A Sustainable Approach for Wastewater Treatment.

Polymers (Basel)

Department of Analytical Chemistry and Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 7 Polizu Street, 011061 Bucharest, Romania.

Published: October 2024

Collagen is a non-toxic polymer that is generated as a residual product by several industries (e.g., leather manufacturing, meat and fish processing). It has been reported to be resistant to bacteria and have excellent retention capacity. However, the recovered collagen does not meet the requirements to be used for pharmaceutical and medical purposes. Due to the scarcity of water resources now affecting all continents, water pollution is a major concern. Another major field that could integrate the collagen generated as a by-product is wastewater treatment. Applications of collagen-based materials in wastewater treatment have been discussed in detail, and comparisons with already frequently used materials have been made. Over the last years, collagen-based materials have been tested for removal of both organic (e.g., pharmaceutical substances, dyes) and inorganic compounds (e.g., heavy metals, noble metals, uranium). They have also been tested for the manufacture of oil-water separation materials; therefore, they could be used for the separation of emulsified oily wastewater. Because they have been analysed for a wide range of substances, collagen-based materials could be good candidates for removing contaminants from wastewater streams that have seasonal variations in composition and concentration. The use of recovered collagen in wastewater treatment makes the method eco-friendly and cost efficient. This paper also discusses some of the challenges related to wastewater treatment: material stability, reuse and disposal. The results showed that collagen-based materials are renewable and reusable without significant loss of initial properties. In the sorption processes, the incorporation of experiments with real wastewater has demonstrated that there is a significant competition among the substances present in the sample.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511115PMC
http://dx.doi.org/10.3390/polym16202923DOI Listing

Publication Analysis

Top Keywords

wastewater treatment
20
collagen-based materials
16
recovered collagen
12
wastewater
8
materials
6
collagen
5
treatment
5
exploring possibilities
4
possibilities recovered
4
collagen contaminants
4

Similar Publications

Human Aichi virus 1 (AiV-1) is a water- and food-borne infection-associated picornavirus that causes gastroenteritis in humans. Recent studies on environmental waters showed a high frequency and abundance of AiV-1, suggesting that it might be an appropriate indicator of fecal contamination. We screened 450 surface and drinking water samples from a Tunisian drinking water treatment plant (DWTP) and the Sidi Salem dam for AiV-1 by real time reverse transcriptase PCR (RT-qPCR).

View Article and Find Full Text PDF

In this study, we optimal the ultrasound-assisted ionic liquid extraction (UAILE) process of polysaccharides from Crataegus songarica K. Koch fruits. The optimal conditions determined were: ultrasonic power of 400 W, temperature of 79 ℃, extraction time of 78 min, Ethylammonium dodecyl sulfate (EADS) concentration of 1.

View Article and Find Full Text PDF

Boosting Electrocatalytic Nitrate Reduction to Ammonia on a Hierarchical Nanoporous Ag,Ni-Codoped Cu Catalyst via Trimetallic Synergistic and Nanopore Enrichment Effects.

Nano Lett

January 2025

Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China.

The electrochemical nitrate (NO) reduction reaction (NORR) offers a promising route for NO wastewater treatment and sustainable ammonia (NH) synthesis. However, the reaction still faces the challenges of unsatisfactory productivity and selectivity. Herein, we report a hierarchical nanoporous Ag,Ni-codoped Cu (np Ag,Ni-Cu) catalyst that exhibits a high NH Faradaic efficiency of 98.

View Article and Find Full Text PDF

Precise prediction of adsorption in a multicomponent system is vital for successful design of dye-contaminated industrial wastewater treatment processes. The present work looks for the reason behind the failure of the competitive Langmuir model (CLM) to describe adsorption in such systems, while the Langmuir model (LM) successfully describes the process for a single dye solution. With that end, derivations of LM and CLM have been revisited, and a criterion for the universality of active sites has been defined.

View Article and Find Full Text PDF

Introduction And Objective: Water in installations in hospitals and social welfare homes (SWHs) should meet the requirements of the Directive of the European Parliament and of the Council on the quality of water intended for human consumption and national regulations issued on its basis. At present, 60 species of bacteria of the genus Legionella sp. are known (of which 30 are considered as pathogenic for humans), and more than 80 serologic groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!