Multifunctional hydrogel dressings remain highly sought after for the promotion of skin wound regeneration. In the present study, multifunctional CHS-DA/HACC (CH) hydrogels with an interpenetrated network were constructed using hydroxypropyl trimethyl ammonium chloride modified chitosan (HACC) and dopamine-modified chondroitin sulfate (CHS-DA), using genipin as crosslinker. The synthesis of HACC and CHS-DA was effectively confirmed using Fourier transform infrared (FT-IR) analysis and H nuclear magnetic resonance (H NMR) spectroscopy. The prepared CH hydrogels exhibited a network of interconnected pores within the microstructure. Furthermore, rheological testing demonstrated that CH hydrogels exhibited strong mechanical properties, stability, and injectability. Further characterization investigations showed that the CH hydrogels showed favorable self-healing and self-adhesion properties. It was also shown that increasing HACC concentration ratio was positively correlated with the antibacterial activity of CH hydrogels, as evidenced by their resistance to and . Additionally, Cell Counting Kit-8 (CCK-8) tests, fluorescent images, and a cell scratch assay demonstrated that CH hydrogels had good biocompatibility and cell migration ability. The multifunctional interpenetrated network hydrogels were shown to have good antibacterial properties, antioxidant properties, stable storage modulus and loss modulus, injectable properties, self-healing properties, and biocompatibility, highlighting their potential as wound dressings in wound healing applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511540PMC
http://dx.doi.org/10.3390/polym16202876DOI Listing

Publication Analysis

Top Keywords

hydrogel dressings
8
chondroitin sulfate
8
interpenetrated network
8
hydrogels exhibited
8
demonstrated hydrogels
8
hydrogels good
8
hydrogels
7
properties
6
fabrication properties
4
properties hydrogel
4

Similar Publications

Enhanced healing of MRSA-infected wounds with okara cellulose nanocrystals-based temperature-sensitive cationic hydrogel: Development and characterization.

Int J Biol Macromol

December 2024

Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:

The development of functional hydrogel dressings with robust mechanical properties has posed a significant challenge in expediting the healing process of MRSA-infected wounds. To address this, a composite hydrogel, comprising carboxylated soybean cellulose nanocrystals (CNCs), poly(N-isopropyl acrylamide) (PNIPAM), dimethyl diallyl ammonium chloride (PDADMAC), and kaolin (CN/P-K) was synthesized. CNCs served to stabilize the interpenetrating polymer networks of PNIPAM and PDADMAC through hydrogen bonding and electrostatic interactions, respectively, while the kaolin interlayer improved the material toughness.

View Article and Find Full Text PDF

Globally, traumatic injuries and severe hemorrhagic wounds resulting from natural disasters, wars, traffic accidents, and operation rooms, especially during birth, are among the most difficult humanitarian and economic problems. Thus, the priority in emergency medical treatment is reducing unexpected blood loss, which can significantly influence a patient's rescue and recovery speed. For the immediate cessation of bleeding in severe hemorrhagic wounds and to speed up their healing, environmentally friendly γ-ionizing irradiation technology was used to develop innovative natural-based hydrogels impregnated with traditional medicinal plant extracts (MPE) with proven hemostatic and bactericidal potential as potential dressings for hemostasis, infection control, and wound healing.

View Article and Find Full Text PDF

Bacterial-infected skin wounds caused by trauma remain a significant challenge in modern medicine. Clinically, there is a growing demand for wound dressings with exceptional antibacterial activity and robust regenerative properties. To address the need, this study proposes a novel multifunctional dressing designed to combine efficient gas exchange, effective microbial barriers, and precise drug delivery capabilities, thereby promoting cell proliferation and accelerating wound healing.

View Article and Find Full Text PDF

To address the issues of infectious virus, bacterial secondary infections, skin pigmentation, and scarring caused by monkeypox virus (MPXV), a sprayable hydrogel with versatile functions was developed with comprehensive properties. Based on current research, the bioactive deep eutectic solvent (DES) of rosmarinic acid-proanthocyanidin-glycol (RPG) was designed and synthesized as active agent, and molecular docking was applied to discover its binding to MPXV proteins through H-bonds and van der Waals interactions, and the docking results show the binding energies between RA, PC, Gly and MPXV proteins are -58.7188, -50.

View Article and Find Full Text PDF

Skin, as the primary interface with the external environment, is susceptible to damage, posing a formidable challenge for complete restoration in adult skin injuries. Wound healing remains a clinical challenge, necessitating advanced biomaterials to support cell proliferation, modulate inflammation, and combat infections. Among several options, hydrogel can be a capable contender for biological dressings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!