Alzheimer's disease (AD) is a common clinical neurodegenerative disorder, primarily characterized by progressive cognitive decline and behavioral abnormalities. The hallmark pathological changes of AD include widespread neuronal degeneration, plaques formed by the deposition of amyloid β-protein (Aβ), and neurofibrillary tangles (NFTs). With the acceleration of global aging, the incidence of AD is rising year by year, making it a major global public health concern. Due to the complex pathology of AD, finding effective interventions has become a key focus of research. Ouabain (OUA), a cardiac glycoside, is well-known for its efficacy in treating heart disease. Recent studies have also indicated its potential in AD therapy, although its exact mechanism of action remains unclear. This study integrates bioinformatics, multi-omics technologies, and in vivo and in vitro experiments to investigate the effects of OUA on the pathophysiological changes of AD and its underlying molecular mechanisms. This study analyzed the expression of the triggering receptor expressed on myeloid cells 2 (TREM2) across different stages of AD using bioinformatics. Serum samples from patients were used to validate soluble TREM2 (sTREM2) levels. Using an Aβ-induced microglial cell model, we confirmed that OUA enhances the PI3K/AKT signaling pathway activation by upregulating TREM2, which reduces neuroinflammation and promotes the transition of microglia from an M1 proinflammatory state to an M2 anti-inflammatory state. To evaluate the in vivo effects of OUA, we assessed the learning and memory capacity of FAD transgenic mice using the Morris water maze and contextual fear conditioning tests. We used real-time quantitative PCR, immunohistochemistry, and Western blotting to measure the expression of inflammation-associated cytokines and to assess microglia polarization. OUA enhances cognitive function in FAD mice and has been confirmed to modulate microglial M1/M2 phenotypes both in vitro and in vivo. Furthermore, through bioinformatics analysis, molecular docking, and experimental validation, TREM2 was identified as a potential target for OUA. It regulates PI3K/Akt signaling pathway activation, playing a crucial role in OUA-mediated M2 microglial polarization and its anti-inflammatory effects in models involving Aβ-stimulated BV-2 cells and FAD mice. These findings indicate that OUA exerts anti-neuroinflammatory effects by regulating microglial polarization, reducing the production of inflammatory mediators, and activating the PI3K/Akt signaling pathway. Given its natural origin and dual effects on microglial polarization and neuroinflammation, OUA emerges as a promising therapeutic candidate for neuroinflammatory diseases such as AD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510559 | PMC |
http://dx.doi.org/10.3390/nu16203558 | DOI Listing |
Nat Aging
January 2025
Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea.
The abnormal deposition of amyloid β (Aβ), produced by proteolytic cleavage events of amyloid precursor protein involving the protease γ-secretase and subsequent polymerization into amyloid plaques, plays a key role in the neuropathology of Alzheimer's disease (AD). Here we show that ErbB3 binding protein 1 (EBP1)/proliferation-associated 2G4 (PA2G4) interacts with presenilin, a catalytic subunit of γ-secretase, inhibiting Aβ production. Mice lacking forebrain Ebp1/Pa2g4 recapitulate the representative phenotypes of late-onset sporadic AD, displaying an age-dependent increase in Aβ deposition, amyloid plaques and cognitive dysfunction.
View Article and Find Full Text PDFNat Commun
January 2025
Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
Glucose deprivation, a hallmark of the tumor microenvironment, compels tumor cells to seek alternative energy sources for survival and growth. Here, we show that glucose deprivation upregulates the expression of mitochondrial-cytochrome c oxidase II (MT-CO2), a subunit essential for the respiratory chain complex IV, in facilitating glutaminolysis and sustaining tumor cell survival. Mechanistically, glucose deprivation activates Ras signaling to enhance MT-CO2 transcription and inhibits IGF2BP3, an RNA-binding protein, to stabilize MT-CO2 mRNA.
View Article and Find Full Text PDFTransl Neurodegener
December 2024
Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421009, China.
Background: Neurological complications are a significant concern of Coronavirus Disease 2019 (COVID-19). However, the pathogenic mechanism of neurological symptoms associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is poorly understood.
Methods: We used Drosophila as a model to systematically analyze SARS-CoV-2 genes encoding structural and accessory proteins and identified the membrane protein (M) that disrupted mitochondrial functions in vivo.
Small
December 2024
Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China.
Mitochondrial dysfunction plays an important role in neuroinflammation and cognitive impairment in Alzheimer's disease (AD). Herein, this work designs a mitochondria-targeted micelle CsA-TK-SS-31 (CTS) to block the progression of AD by simultaneously alleviating mitochondrial dysfunction in microglia and neurons. The mitochondria-targeted peptide SS-31 drives cyclosporin A (CsA) to penetrate the blood-brain barrier (BBB) and delivers CsA to mitochondria of microglia and neurons in the brains of 5 × FAD mice.
View Article and Find Full Text PDFJ Biomed Opt
December 2024
Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States.
Significance: Cellular metabolic dynamics can occur within milliseconds, yet there are no optimal tools to spatially and temporally capture these events. Autofluorescence imaging can provide metabolic information on the cellular level due to the intrinsic fluorescence of reduced nicotinamide adenine dinucleotide (phosphate) [NAD(P)H] and flavin adenine dinucleotide (FAD).
Aim: Our goal is to build and evaluate a widefield microscope optimized for rapid autofluorescence imaging of metabolic changes in cells.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!