A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Are Changes Occurring in Bacterial Taxa Community and Diversity with the Utilization of Different Substrates within SIR Measurements? | LitMetric

This research explores how the availability of substrates affects the regulation of soil microbial communities and the taxonomical composition of bacteria. The goal is to understand the impact of organic matter and substrate availability and quality on the diversity of soil bacteria. The study observed gradual changes in bacterial diversity in response to the addition of different substrate-induced respiration (SIR) substrates. Understanding the structure, dynamics, and functions of soil microbial communities is essential for assessing soil quality in sustainable agriculture. The preference for carbon sources among bacterial phyla is largely influenced by their life history and trophic strategies. Bacterial phyla like , , and , which thrive in nutrient-rich environments, preferentially utilize glucose. On the other hand, oligotrophic bacterial phyla such as or , which are found in lower numbers, have a lower ability to utilize labile C. The main difference between the two lies in their substrate utilization strategies. Understanding these distinct strategies is crucial for uncovering the bacterial functional traits involved in soil organic carbon turnover. Additionally, adding organic matter can promote the growth of copiotrophic bacteria, thus enhancing soil fertility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510085PMC
http://dx.doi.org/10.3390/microorganisms12102034DOI Listing

Publication Analysis

Top Keywords

bacterial phyla
12
soil microbial
8
microbial communities
8
organic matter
8
bacterial
6
soil
6
changes occurring
4
occurring bacterial
4
bacterial taxa
4
taxa community
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!