Effects of on Growth and Rhizosphere Microbial Community of Continuous Cropping .

Microorganisms

College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China.

Published: September 2024

This study analyzed the effects of on the growth of continuous cropping and the physical and chemical properties of rhizosphere soil and microbial community structure, using Illumina Miseq (PE300) high-throughput sequencing technology along with physiological and biochemical detection. The results indicated that after applying , the growth of was significantly promoted, with increases in plant height, fresh weight, and dry weight of 21.42%, 24.5%, and 4.5%, respectively. The pH of the rhizosphere soil decreased from 7.78 to 7.51, while the electrical conductivity, the available phosphorus, the available potassium, and the total nitrogen were markedly higher compared to the control group and increased by 13.95%, 22.54%, 21.37%, and 16.41%, respectively. The activities of catalase and sucrase in the rhizosphere increased by 18.33% and 61.47%, and the content of soil organic carbon (SOC) increased by 27.39%, which indicated that could enhance soil enzyme activity and promotes the transformation of organic matter. The relative abundance of beneficial bacteria such as increased, while the relative abundance of harmful fungi such as and decreased significantly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509707PMC
http://dx.doi.org/10.3390/microorganisms12101987DOI Listing

Publication Analysis

Top Keywords

effects growth
8
microbial community
8
continuous cropping
8
rhizosphere soil
8
relative abundance
8
rhizosphere
4
growth rhizosphere
4
rhizosphere microbial
4
community continuous
4
cropping study
4

Similar Publications

Photobiomodulation (PBM) therapy, a non-thermal light therapy using nonionizing light sources, has shown therapeutic potential across diverse biological processes, including aging and age-associated diseases. In 2023, scientists from the National Institute on Aging (NIA) Intramural and Extramural programs convened a workshop on the topic of PBM to discuss various proposed mechanisms of PBM action, including the stimulation of mitochondrial cytochrome C oxidase, modulation of cell membrane transporters and receptors, and the activation of transforming growth factor-β1. They also reviewed potential therapeutic applications of PBM across a range of conditions, including cardiovascular disease, retinal disease, Parkinson's disease, and cognitive impairment.

View Article and Find Full Text PDF

Fluorescent biosensors offer a powerful tool for tracking and quantifying protein activity in living systems with high temporospatial resolution. However, the expression of genetically encoded fluorescent proteins can interfere with endogenous signaling pathways, potentially leading to developmental and physiological abnormalities. The EKAREV-NLS mouse model, which carries a FRET-based biosensor for monitoring extracellular signal-regulated kinase (ERK) activity, has been widely utilized both in vivo and in vitro across various cell types and organs.

View Article and Find Full Text PDF

∆-Tetrahydrocannabinol Increases Growth Factor Release by Cultured Adipose Stem Cells and Adipose Tissue in vivo.

Tissue Eng Regen Med

January 2025

Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.

Background: Because of its biocompatibility and its soft and dynamic nature, the grafting of adipose tissue is regarded an ideal technique for soft-tissue repair. The adipose stem cells (ASCs) contribute significantly to the regenerative potential of adipose tissue, because they can differentiate into adipocytes and release growth factors for tissue repair and neovascularization to facilitate tissue survival. The present study tested the effect of administering a chronic low dose of ∆-tetrahydrocannabinol (THC) on these regenerative properties, in vitro and in vivo.

View Article and Find Full Text PDF

Risk-taking is a concerning yet prevalent issue during adolescence and can be life-threatening. Examining its etiological sources and evolving pathways helps inform strategies to mitigate adolescents' risk-taking behavior. Studies have found that unfavorable environmental factors, such as adverse childhood experiences (ACEs), are associated with momentary levels of risk-taking in adolescents, but little is known about whether ACEs shape the developmental trajectory of risk-taking.

View Article and Find Full Text PDF

P2YR-IGFBP2 signaling: new contributor to astrocyte-neuron communication.

Purinergic Signal

January 2025

International Joint Research Centre On Purinergic Signalling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.

In a recent article published in Nature Communications (Shigetomi et al Nat Commun 15(1):6525, 2024), Shigetomi et al. identified that upregulated astrocytic purinergic P2Y receptors (P2YR), acting via the downstream molecule, insulin-like growth factor binding protein 2 (IGFBP2), play a crucial role in neuronal hyperexcitability. In epilepsy and stroke models, P2YR-IGFBP2 signaling was found to mediate astrocyte-driven neuronal hyperexcitability and so is a new contributor to astrocyte-neuron communication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!